EXPRESSING A NUMBER AS A SUM OF TWO SQUARES

Problem. Find the number of ways S(n) in which a positive integer n > 1 can be
represented in the form

n =2+ y? (x >y >0).

Remark 1. From
(z+9)°+ (x—y)* =2(z" +¢*)

we deduce easily that if n = 2°m then
S(n)=5(n/2)=Sn/4)=---=S(m).

For example, 5(280) = S(35). So we can confine our attention to odd n, which we
do from now on.

Remark 2. Geometrically, multiplication by ¢ is rotation through 90 degrees. Con-
sequently every non-zero Gaussian integer is in a unique way the product of a unit
and a Gaussian integer a + ib lying in the first quadrant (i.e., a > 0 and b > 0). As
the Gaussian integers form a UFD, it follows that every non-zero non-unit Gaussian
integer factors uniquely as a unit times a product of prime, first-quadrant Gaussian
integers.

Remark 3. A key observation is that 22+ is the norm N (£) of a Gaussian integer
¢ = x + iy, and then it is also the norm of y + ix. If z and y are both positive,
then exactly one of these two has real part > imaginary part. Hence if S’(n) is the
number of first-quadrant Gaussian integers ¢ such that N(§) = n (so that = # y
since n is odd) then we have S’(n) = 25(n) unless n is a square, say n = m?,
in which case the Gaussian integer m + 0 contributes 1 to S’(n) but does not

contribute to S(n), so that S'(n) =25(n) + 1.

It is easier to work with S’ than directly with S, because of the following Lemma.

Lemma. If n = niny with (n1,n2) = 1 then every Gaussian integer £ such that
N(&) = n factors uniquely as € = u€,&, where u is a unit, & and &, are first-
quadrant Gaussian integers, N(&;) = ny and N (&) = na.

Proof. Factor £ as in Remark 2. Let §; ( = 1,2) be the product of all the prime
factors of & whose norm (which, recall, is either a Z-prime = 1 (mod 4) or the
square of a Z-prime = 3 (mod 4), and is a divisor of n, hence of n; or ny, but not
both) divides n;. Let §; be the unique first-quadrant Gaussian integer associated
to & (i.e., equal to & times a unit). Then N(;v) = N(&}) divides n; (why?), and

N(&)N(&) = N(§) =n =niny

shows that N({;) = n;. This proves the existence of the asserted factorization of &.
Uniqueness is left as an exercise.
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Corollary. If ny > 1 and ny > 1 are relatively prime then

S,(ﬂlng) = S/(nl)S'(ng).

Now factor n as

(1) n:pi1 ~-~p;irq11 q{e

where the p; are distinct positive integer primes = 1 (mod 4) and the g; are distinct
positive integer primes = 3 (mod 4).
The preceding Corollary yields:

(2) S'(n) = S'(p$") -+ S (pe)S" (af*) -+~ 8" ().

For a prime p = 1 (mod 4) there are two first-quadrant Gaussian integers &;
and &, having norm p, namely those which appear in the factorization of p (see
Remark 2). Factoring any & with norm p¢ as in Remark 2, we see that

E=¢f éefg) (9=0,1,...,¢).
Hence
(3) S'(p°) =e+1.

For a prime ¢ = 3 (mod 4) the only first-quadrant Gaussian integer £ having ¢°
as norm is ¢(¢/?) (as can be seen by factoring £ into Gaussian primes). Thus

1if f is even,

) §'(ah) = { 0if f is odd.

From (2), (3), (4), and Remark 3, we conclude:

Theorem. For n as in (1) we have S(n) = 0 if any f; is odd; and if all the f;
are even then

S(n) = { 1/2(e1 +1)(ea+1)--- (e, + 1) if n is not a square,
L 1/2[(er +1)(ea +1) -+ (e, + 1) — 1] if n is a square.

Example. If n = p?pyp3 with distinct positive integer primes p; = 1 (mod 4) then
S(n) = 6.

The number of right-angle triangles with integer sides having hypotenuse n is
S(n?) = 22. (Just 4 of these have relatively prime sides—count the solutions of
n = u? + v? with relatively prime u and v).



