EXPRESSING A NUMBER AS A SUM OF TWO SQUARES

Problem. Find the number of ways $S(n)$ in which a positive integer $n>1$ can be represented in the form

$$
n=x^{2}+y^{2} \quad(x \geq y>0)
$$

Remark 1. From

$$
(x+y)^{2}+(x-y)^{2}=2\left(x^{2}+y^{2}\right)
$$

we deduce easily that if $n=2^{e} m$ then

$$
S(n)=S(n / 2)=S(n / 4)=\cdots=S(m)
$$

For example, $S(280)=S(35)$. So we can confine our attention to odd n, which we do from now on.

Remark 2. Geometrically, multiplication by i is rotation through 90 degrees. Consequently every non-zero Gaussian integer is in a unique way the product of a unit and a Gaussian integer $a+i b$ lying in the first quadrant (i.e., $a>0$ and $b \geq 0$). As the Gaussian integers form a UFD, it follows that every non-zero non-unit Gaussian integer factors uniquely as a unit times a product of prime, first-quadrant Gaussian integers.

Remark 3. A key observation is that $x^{2}+y^{2}$ is the norm $N(\xi)$ of a Gaussian integer $\xi=x+i y$, and then it is also the norm of $y+i x$. If x and y are both positive, then exactly one of these two has real part \geq imaginary part. Hence if $S^{\prime}(n)$ is the number of first-quadrant Gaussian integers ξ such that $N(\xi)=n$ (so that $x \neq y$ since n is odd) then we have $S^{\prime}(n)=2 S(n)$ unless n is a square, say $n=m^{2}$, in which case the Gaussian integer $m+i 0$ contributes 1 to $S^{\prime}(n)$ but does not contribute to $S(n)$, so that $S^{\prime}(n)=2 S(n)+1$.

It is easier to work with S^{\prime} than directly with S, because of the following Lemma.
Lemma. If $n=n_{1} n_{2}$ with $\left(n_{1}, n_{2}\right)=1$ then every Gaussian integer ξ such that $N(\xi)=n$ factors uniquely as $\xi=u \xi_{1} \xi_{2}$ where u is a unit, ξ_{1} and ξ_{2} are firstquadrant Gaussian integers, $N\left(\xi_{1}\right)=n_{1}$ and $N\left(\xi_{2}\right)=n_{2}$.
Proof. Factor ξ as in Remark 2. Let $\xi_{j}^{\prime}(j=1,2)$ be the product of all the prime factors of ξ whose norm (which, recall, is either a \mathbb{Z}-prime $\equiv 1(\bmod 4)$ or the square of a \mathbb{Z}-prime $\equiv 3(\bmod 4)$, and is a divisor of n, hence of n_{1} or n_{2}, but not both) divides n_{j}. Let ξ_{j} be the unique first-quadrant Gaussian integer associated to ξ_{j}^{\prime} (i.e., equal to ξ_{j}^{\prime} times a unit). Then $N\left(\xi_{j} v\right)=N\left(\xi_{j}^{\prime}\right)$ divides n_{j} (why?), and

$$
N\left(\xi_{1}\right) N\left(\xi_{2}\right)=N(\xi)=n=n_{1} n_{2}
$$

shows that $N\left(\xi_{j}\right)=n_{j}$. This proves the existence of the asserted factorization of ξ. Uniqueness is left as an exercise.

Corollary. If $n_{1}>1$ and $n_{2}>1$ are relatively prime then

$$
S^{\prime}\left(n_{1} n_{2}\right)=S^{\prime}\left(n_{1}\right) S^{\prime}\left(n_{2}\right)
$$

Now factor n as

$$
\begin{equation*}
n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} q_{1}^{f_{1}} \cdots q_{s}^{f_{s}} \tag{1}
\end{equation*}
$$

where the p_{i} are distinct positive integer primes $\equiv 1(\bmod 4)$ and the q_{j} are distinct positive integer primes $\equiv 3(\bmod 4)$.

The preceding Corollary yields:

$$
\begin{equation*}
S^{\prime}(n)=S^{\prime}\left(p_{1}^{e_{1}}\right) \cdots S^{\prime}\left(p_{r}^{e_{r}}\right) S^{\prime}\left(q_{1}^{f_{1}}\right) \cdots S^{\prime}\left(q_{s}^{f_{s}}\right) \tag{2}
\end{equation*}
$$

For a prime $p \equiv 1(\bmod 4)$ there are two first-quadrant Gaussian integers ξ_{1} and ξ_{2} having norm p, namely those which appear in the factorization of p (see Remark 2). Factoring any ξ with norm p^{e} as in Remark 2, we see that

$$
\xi=\xi_{1}^{g} \xi_{2}^{(e-g)} \quad(g=0,1, \ldots, e)
$$

Hence

$$
\begin{equation*}
S^{\prime}\left(p^{e}\right)=e+1 \tag{3}
\end{equation*}
$$

For a prime $q \equiv 3(\bmod 4)$ the only first-quadrant Gaussian integer ξ having q^{e} as norm is $q^{(e / 2)}$ (as can be seen by factoring ξ into Gaussian primes). Thus

$$
S^{\prime}\left(q^{f}\right)=\left\{\begin{array}{l}
1 \text { if } f \text { is even } \tag{4}\\
0 \text { if } f \text { is odd }
\end{array}\right.
$$

From (2), (3), (4), and Remark 3, we conclude:
Theorem. For n as in (1) we have $S(n)=0$ if any f_{j} is odd; and if all the f_{j} are even then

$$
S(n)=\left\{\begin{array}{l}
1 / 2\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{r}+1\right) \text { if } n \text { is not a square } \\
1 / 2\left[\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{r}+1\right)-1\right] \text { if } n \text { is a square }
\end{array}\right.
$$

Example. If $n=p_{1}^{2} p_{2} p_{3}$ with distinct positive integer primes $p_{i} \equiv 1(\bmod 4)$ then $S(n)=6$.

The number of right-angle triangles with integer sides having hypotenuse n is $S\left(n^{2}\right)=22$. (Just 4 of these have relatively prime sides-count the solutions of $n=u^{2}+v^{2}$ with relatively prime u and $\left.v\right)$.

