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Introduction.

We present here an approach to unique factorization of complete (=integrally
closed) ideals in two-dimensional regular local rings, based on a decomposition
theorem ({2.5) below) which is valid in all dimensions.

The theory of complete ideals in two-dimensional regular local rings was
founded by Zariski [Z], [ZS2, appendix 5], and furthur developed in [Ho}, [D],
[L], and [G]. Recent interest in this subject (and related ones) has been shown
in [R), [Sp], [C] and [Hy].

Zariski’s work was motivated by the birational theory of linear systems on
smooth surfaces [Z, Chapter 2]. Roughly speaking, the monoid of complete
ideals in a normal noetherian ring R (with product I * J = {completion of 1J})
generates the group of locally principal divisors on the Zariski-Riemann space
of R; these divisors can also be interpreted more concretely as h_m} of divisors
on schemes birational over R, and thereby one connects to classical situations
involving divisors and linear systems on such schemes (cf. [Z', appendix to ch.2]
for more details).

Zariski first raised the question of higher-dimensional generalizations in [Z,
p.152], but not much has happened in this respect during the intervering fifty
years. Perhaps the lack of progress is understandable in view of the complexity
of birational geometry in dimension > 3. It is possible to extend the definitions
in [Z’, appendix to Ch.2] to higher dimension (cf. [W],{Sn),{ZS;, pp.356-361],
and §1 below) but not the main results in [ibid, §4]. In itself what this yields is
little more than a convenient language for discussing linear systems with base
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conditions, a theory in search of theorems. Zariski himself eventually concluded
(282, p.362]: “It is almost certain that the theory ... cannot be generalized
to higher dimension without substantial modifications both of statements and
proofs.” .

Indeed, whereas I x J = IJ in dimension two (i.e. the product of com-
plete ideals is still complete), counterexamples to such a statement in three-
~ dimensional regular local rings have recently been given by Huneke[Hu, §3].
And the main theorem in dimension two, on unigue factorization of complete
ideals into simple complete ideals, also breaks down in higher dimension. The
first counterexample is due to Cutkosky [C]. Huneke and I subsequently found
the following counterexample, in a power series ring k[[z, ¥, 2]}, k a field:

(0.1) (2,9, 2)(2,4°, 2%, my,yz, 22) = (22,9, 2) (2, ¥, 2)(z, y, 22).

The ideals appearing here are all complete and *-simple (¢f. beginning of §2),
and the product ideal on each side is also complete.

In spite of these discouraging developments, the main results in §2 below
may offer a scintilla of hope that some substantial generalizations are not en-
tirely out of reach. What we do in §2, after setting up the foundations in 81, is
to associate special #-simple complete ideals 1o certain “infinitely near points”;
and then show that any “finitely supported” complete ideal admits a “unique
factorization” into special *-simple complete ideals, with possibly negative ex-
ponents. (Precise statements are given in (2.1) and (2.5).) Thus, in (0.1), the
simple complete ideals (2%, 3, 2), (2,3, 2), (2, y, 2%) are all special {associated to
the infinitely near points (= quadratic transforms) in the directons (1 : 0 : 0),
(0:1:0),(0: 0: 1) respectively), and they all appear in the “factorization”
of (z%,4%,2%, 2y, yz,22) with exponent +1, while the maximal ideal (z,v,2),
which is also special (associated to k[[z,y,2]] itself), may be said to appear
with exponent —1.

Unique factorization in dimension two is derived from Theorem (2.5) in §4,
via some results in §3. The point is that in dimension two there are no negative
exponents.

Acknowledgement. While preparing the paper, I benefited greatly from
numerous stimulating conversations with Craig Huneke.

§1. Point bases and completions of ideals in regular local rings.

This section is based on ideas going back to [Z]. The main results are Propo-
sition (1.10) and its elaborations Propositions (1.16) and (1.23).

If R is a noetherian local domain, with maximal ideal m and fraction field
K, then a prime divisor of R is a valuation v of K whose valuation ring R,
dominates R (i.e. R C R, and m C m,, the maximal ideal of R,), and such that
the tramscendence degree of the field R, /m, over R/m is as large as possible,
viz. dim R—1; such a v must be a discrete rank one valuation [A, p.330, Thm.1}.




Let I be an ideal in any commutative ring R. An element z € R is integral
over I if z satisfies a condition of the form

m“+a;z"‘1+azx"‘2+---+an=0 (ajte,1_<_j§n),

i.e. if for some n > 0, 2" € I(I + :BR)“'I. The set of all such z, denoted I,
is called the integral closure, or completion, of I. The completion I is itself an
ideal, and we have I C T = 1. ! I is integrally closed, or complete, if I = I.

Proposition (1.1). Let R be an integral domain with fraction field K,
and let I be an ideal in R, with completion 1. Then for any valuation v of K
whose valuation ring R, contains R, we have IR, = IR,. Conversely, if R
is noetherian, local, and universally catenary [EGA 1V, (5.6.2)] (for example R
regular [ibid. (5.6.4)]) then for every z ¢ I there exists a prime divisor v of R
such thatz ¢ IR,.

Proof: For the first assertion, cf. [ZS,, p.350, proof of Thm.1). For the
second, m being the maximal ideal of R, it will suffice to produce a finitely
generated R-subalgebra S of K and a height one prime ideal p in § such that
m-+2z~11 C p; for then, since R is universally catenary, the field 5,/pS, will have
transcendence degree dim R — 1 over its subfield R/m, and so any valuation ring
R, in K dominating S, (i.e. any localization at a maximal ideal of the integral
closure of S, in K, cf. [B, §2, no.5, Cor.2]) will give a prime divisor v with
™1l c my,ie = ¢ IR,.

Actually we need not assume that the prime ideal p has height one, since
this can always be arranged by blowing up (argue as in [ZS;, p.96]). So consider
the ring

S=Rlz7 1= |J I +zR)"/z"
n>0
and note that p = m+ z~17§ is an ideal in S such that S/p is a homomorphic
image of R/m. Moreover 1 ¢ p, since otherwise there would be a relation of the

form
l+acI(I+zR)" /z™ aem, n>0,

and multiplying this by z™(1 + a)'"1 would yield z € T, a contradiction. Thus p
is a maximal ideal in S, and we are done.

* * *

Next, after a preparatory lemma, we describe the fransform of an ideal
(Definition (1.4), Proposition (1.5)).

1These assertions follow e.g. from the fact that z € T if and only if, in the polynomial ring
R[T], the element zT is integral over the graded subring R[IT].




Lemma (1.2). Let R be an integral domain with fraction field K, and let
p be a prime ideal in R such that the localization R, is a discrete valuation ring
(dv.r.). Let S be a ring with RC S C K, and set S5,=S5S@rR, CK (ie. S
is the ring of fractions S(M~'), M = R~ p). Let

p° =pS,N8.

Then the following are equivalent:

(i) p° # 8.

(ii) ¢ = p° is the unique prime ideal in S whose intersection with R is p;
and §; = R,,.

(iif) There ezists an ideal J in S such that TN R = -

(iliy pSNR =p.

(iv) S, # K.

(v) Sp = R,.

(v)) SCR,.

Proof: The implications (i) = (i) = (iv), (ii) = (i) « (iii)’, and (ii) =
{(v)' & (v) are all trivial. (iii) = (iv) is immediate (since J N R = p implies
0 # JSp # Sp), as is (iv) = (v) (since R, C S, C K and R, is a d.v.r).

It remains to prove that (v) = (ii). If S, = R, then ¢ =p° = pR, N S is a
prime ideal in §, and ¢N R = pR, N R = p; and furthermore R, CS5,#K,so
that R, being a d.v.r. we must have R, = S,. Similarly for any prime ideal q
in 5 such that ¢'NR = p, we have S;» = R,(= 5,); and therefore ¢’ = g. g.e.d.

Suppose now that R is a unique factorization domain (UFD) with fraction
field K. For any non-zero ideal I in R, let z be a greatest common divisor of the
elements in I (i.e., among the principal ideals containing I, zR is the smallest)
and set

I"=¢7'R={2€ K|2IC R}.

Then IT~? is the unique ideal J in R such that:

(i) J=! = R (i.e., R itself is the only principal ideal containing J), and
(ii) I = yJ for some y in R.

Thus: every non-zere ideal I in R is uniquely of the form
(1.3) I=pP’p3*--p2nJ (i >0)

where the p; are principal prime ideals, the a; are (strictly) positive integers,
and J is an ideal with J-! = R.

Definition (1.4). Let R be a UFD with fraction field K, and let S be a
UFD with RC § C K. Let I # (0) be an ideal in R, factor I as in (1.3), and




for eachi=1,2,...,n, set g; = p? (cf. (1.2)). We define the transform of I in
S to be the ideal

I = gt - gy (ST S)
In particular, if I is a principal prime ideal then IS is the same here as in (1.2).

Some basic properties of the “transform” operation are given in the next
Proposition.

Proposition (1.5). Let R C S C K be as in (1.4), let I, I, I, be non-zero
ideals in R and let T be ¢ UFD with SCT C K.

(i) If I is o principel prime ideal, then either ISNR = I, in which case I S s
a principal prime ideal with ISNR = I; or ISN R # I, in which case IS=8.

(i) If I-! = R, then IS = (ISY(IS)™! (so that (I°)~! = S).

(iii) ( Compatibility of transform with products.) (I1;)° = I I .

(iv) (Transitivity of transform.) (I5)T =17,

(v) (Locelization.) If S is a ring of fractions of R, then IS = IS.

(vi) (Compatibility with integral dependence.) If I C I C I, (the completion
of I) then I§ C If C (I3).

Proof: (i)—(v) are left as an exercise. As for (vi), we first check, by applying
the first assertion in (1.1} to the discrete valuation rings obtained by localizing
R at height one primes p, that I7} = I;! (note that I;! = J', where J; =
(\L1R,). Hence for suitable z € R and with L; = LI (i = 1,2) we have
P

I =zl,, I, =2zL,, Li_lﬁL;1=R, L2CL1CL_2=2:‘1E;
and if y € S is such that (zR)® = ¢S, (cf. (i}) then (by (iii))
(1.5.1) IS =yLf, I =yL3.

Now since Iy C L,, therefore every z € L; is integral over L. S, and hence,
since L3 is an S-ideal, we have

LS ¢ LS C I,S.
As above, then, (L;8)™! = (L,5)"?, and (by (ii))
(1.5.2) LS = (L28)(L:8)™ C (LaS)L1S)™ = L c LS.
The conclusion follows from (1.5.1) and (1.5.2).
* * *

We come now to “infinitely near points” (Definition (1.6 below) and their
relation to prime divisors (Proposition (1.7)). '




Let K be a field. We denote by Greek letters &, 8,7, .. regular local rings of
Krull dimension > 2, with fraction field X ; and refer to such objects as “points”.
For any point a, let m, be its maximal ideal, and ord, the corresponding order
valuation, i.e., the unique (discrete, rank one) valuation of K such that for
0#£z€a,

orde(z) = max{n |z € m? }.

Recall that a quadratic transform of a point « is a local ring of the form
Q = (afz™'m,]), where z € m,,z ¢ m2, and p is a prime ideal in the ring
afz~'m,) such that m, C p. Such a Q is necessarily regular (hence a point if its
dimension dim Q is > 2), and the residue field Q/mg has transcendence degree
dim a—dim Q over a/m, (cf. [A, p.334, Lemma 10}, or [EGA IV, (5.6.4)]). There
is a unique one-dimensional quadratic transform of a, namely the valuation ring
of ord,.

~ Definition (1.6). A point § is infinitely near to a, 8 » « {or a < 8) in
symbol, if there ezists a sequence .

a=0qCoyC-Can=08 (n>0)

such that for each i = 0,1,...,n—1, Q41 48 o quadratic transform of ;. Such
a sequence, if it exists, is unique; we call it the quadratic sequence from « to 3.

In case dim o = 2, the factorization theorem of Zariski and Abhyankar states
that any S containing « is infinitely near to o {cf. [A, p.343, Thm.3]. 2 No such
statement holds when dim o > 2 (e.g. [Sa]).

If o < B3, then ordg is a prime divisor of a (by the above remarks on quadratic
transforms). In fact, every prime divisor v of « is of the form ordg, where 8
is found as follows: let ay = a, and having defined a; for some ¢ > 0, let
@iy be the unique quadratic transform of ; dominated by (the valuation ring
of) v, unless v = ord,, in which case set B = o; and stop; then this process
must terminate after a finite number of steps (cf. A, p.336, Prop.3]); thus 8 is
the largest point infinitely near to « and dominated by v. In summary (with
remaining details left to the reader):

Proposition (1.7). The map of sets
{points infinitely near to o} — {prime divisors of a}

which takes 3 to ordg is a bijection.

* * *

2A similar result holds if we assume only that a and § are two-dimensional local rings with
fraction field K, such that « is rational and 8 is factorial (¢f. [L, p.203, Prop.(3.1)] and [He,
Thm.1]).




‘We are now almost ready to state the first main result (1.10) of this section.
Let I # (0) be an ideal in a point a. ® I is finitely generated, so for any
valuation v of K whose valuation ring contains «, we can set

v(I) = min{v(2)|z € I}.

If 3> aisan inﬁhitely near point, then, since o and 3 are both regular,
hence UFD’s, the transform I can be defined as in (1.4). In particular, when
B = a, then I? = I.

Definition (1.8). The point basis of a non-zero ideal I C « is the family
of non-negative integers

B(I) = {ordg(I°)}psa-
A base point of I is a point B > a such that ordg(I?) £ 0 (i.e., IP # B).
Remarks (1.9). (a): For any § > ¢, the point basis B(I?) is obtained by
restricting B(I) to the set of y > 8 (because (I?)Y = I, by (1.5)(iv)).
{b): For two non-zero ideals I, J in a, (1.5)(iii) gives:
B(IJ) = B(I) + B(J).

Proposition .(1.10). Two non-zero ideals I,J in a have the same point
basis if and only if their integral closures are equal:

B(I)=B(J)aI=1J.

Proof: * For any § > «, let Rg be the valuation ring of ordg. It follows
from (1.1) and (1.7) that

{IT=J} & {IRsz=JRgforallfB > a}
& {ordg(I) = ordg(J) for all 8 > a}.

The question is whether this last condition is equivalent to:
ordg(IP) = ordg(J?) for all 8 » a.
An affirmative answer can be deduced from the followiﬁg useful fact:
Lemma (1.11). Let 8 » a, and let

a=aoCa1C---Can=ﬁ

INote that o, being integrally closed in K, is determined by I' a = {z € K|zI CI}.
4The implication I = J = B(I) = B(J) also follows from (1.5)}(vi) and (1.1).




be the quadratic sequence from a to 8 (cf. (1.6)). Let L be a non-zero ideal in
a. For0<j<n set

m; = mazimal ideal of o;
ord; = ordg;
L; = L%,

Then for any valuation v whose valuation ring contains 8, we have

n—1

v(L) = v(La) + 3 ord;(L;)v(my).
j=0

Indeed, taking v = ordg, we see from (1.11) that if B(I) = B(J) then
ordg(I) = ordg(J), whence, as above, T = J.

Conversely, if I = J, so that ord;(I) = ord;(J) for 0 < § < n, then we find
by induction on n that ord.(I,) = ord.(Jn), ie., ordg(I®) = ordg(J?); and
thus B(I) = B(J).

Proof of (1.11):  Proceeding by induction on n, we need only show that
v(Ln—l) = v(Ln) + ord,—; (Lﬂ.—l )U(mn—l)

ie., (since L, = (Ln—1)**, (1.5)(iv)), we need only treat the case n = 1. So set
m = my, and assume that 8 = ay, say 8 is a localization of alz"im),z € m, so
that m@ = z8 and v(m) = v(z). We want to show, with [ = ord,(L), that

v(L) = v(L1) + lw{m) = v(Ly) + lu(z).

So it will be enough to check that
(1.11.1) L =z"'Lg.
Since “transform” respects products (1.5)(iii), it is in fact enough to check
(1.11.1) when

(a3) L' = &
and when

(b): L = p, a principal prime ideal in a.

For this purpose, note that if ¢ is a prime ideal in 8 with m ¢ ¢, and if
¢ = gNa, then ay = f, (for, ¢ ¢, s0 ay and B, are both localizations of
afz~1m], and since B, dominates oy, therefore 8, = ay). In particular, every
principal prime ideal in 3 other than 3 intersects a in a principal prime. Since
!l = ord4(L), and since the valuation ring of ord, is the localization of 3 at the
prime ideal 23, therefore

LB ¢ 2B,




and in case (a) it follows that no principal prime contains z~'Lg3, ie.,
(ef. (1.5)(ii)):

e LB = (LB)N(LB) = LP = L.
As for case (b), it follows that except for 23 every associated prime ideal of the
principal ideal pg intersects ¢ in p, whence, (e.g., by|[ZS;, p.225, Thm.17]) with
notation as in (1.2):

z7'pB =pB,NB =1° = L.
q.e.d.

Exercise (1.12). Generalize (1.11.1) by showing, for any 8 Z a, that an
ideal L' in 8 equals L? if and only if:

(i) L' = y~1LB for some y € B such that m,8 C /33, and

(it} (maB) : L' = m,B.

(In other words, y0 is the smallest principal ideal containing LS and all of
whose associated primes contain m,g)

* * *

We continue with some simple—but necessary— supplements to the forego-
ing material.

Definition (1.13). For any two ideals I,J in a commutative ring R, we

set
IxJ=T1J (the completion of 1),

Lemma (1.14). Assume that R is a commutative integral domain.
(i) For any two tdeals I,J in R we have I+ J =T« J.
(i) If I is complete and J # (0) is finitely generated then

I*J):J=1

(iii) The non-zero complete ideals in R, with the x-product, form a commy-
tative monoid Mp with cancellation (i.e., IxJ=I'« J = I =1T).

Proof: (i) is a consequence of the fact that if # ¢ T and y € J then
zy € IJ, a fact which follows easily from [ZS;, bottom of p.349] (where N # (0)).
Similarly one shows that if J is finitely generated then zJ C I % J implies that
z €1, and (ii) results. As for (iii), associativity of the x-product can be shown
as follows:

(I1 * Ig) *I3 = (Ilfz) *I3 (Cf. (l)) = 111'213 = I1 * (IgIs)
= I (I xI3);

while commutativity and the existence of an identity (viz. R) are obvious. Can-
cellation follows from (ii). q.e.d.




From (1.10) we have that for complete ideals I, J,
(1.15) B(I*J)=B(IJ)=B{I)+B(J)

and furthermore
{B(I)=B(J)} = {I=J}.

Thus:

Proposition (1.16). By associating to each non-zero complete ideal I in a
point a the point basis B(I), we obtain an injective homomorphism of monoids

Mq —3 H Nﬁ
Bra
where, for each B > a, Np is the monoid of non-negative integers (under addi-

tion).

* * *

Definition (1.17). With R C 8 C K as in (1.4), and I o non-zero ideal
in R, we define the complete transform IS to be IS, the completion of IS.

Proposition (1.18). With notation as in (1.5), we have:
(1) (I] * Iz)s (I]Ig)s = Il *IS
(1) (I%)T = (15)T =

Proof: By (vi) of (1.5) we have
(I].Iz)s C (I] * Ig)s C (I}_Iz)s

and hence _ -
(I]_ ¥ Iz)'g = (Ilfz)s = (Ilfg)s.

Furthermore, by (iii) of (1.5) we have
(LWL =IFG =If + If = IS« If

(the last equality by (1.14)(i)), proving (i).
Again by (vi) of (1.5),

(IS)T c (IE)T c (Is)'f

and hence
(15T = (I%)7.
And by (iv) of (1.5),

(IS =T =1T = I7.




qg.ed.

Remark (1.19): If S is an integrally closed domain, then every principal
ideal in $ is complete (for, if 0 # y € 9, then an equation of integral dependence
of  over yS yields an equation of integral dependence of x/y over S ... )-
Moreover, if I is an ideal in S such that T is principal, say T = 5, then [ = 1.
{This is clear if ¢ = 0; and otherwise £~ ¢ § and an equation of integral
dependence of z over [ yields

lea U+ 2P+ =271
whence z € I.). In particular, with I C R C § as in (1.17):
{IS is principal} « {I° is principal} = {IS = I°};
and if I-! = R, then (cf. (1.5)(ii)):

(I’ =8} & {I° = §}

* * *

Definition (1.20). An ideal I in o is finitely supported if I # (0) and I
has at most finitely many base points (cf. (1.8)). '

Proposition (1.21). If I is a finitely supported ideal in e, then for all
B > a, the transform I? is finitely supported, and the ring B/IP is artinian.

Proof: The first assertion follows from (1.9) (a). For the second, we may
then assume that 8 = a. Suppose that I is contained in a non-maximal prime
ideal p. Then any v > a such that ¥ C a, is a base point of I, because by
(15)(v) and (L.5)(iv),

ap # Iap = I% = (I7)%

so that I7 # «. Thus (1.21) results from the following elementary fact:

Lemma (1.21.1). Let p be a non-mazimal prime ideal in o. Then there
exists a quadratic transform ay of & with &y C ayp; and hence there is an infinite
sequence

a=ayCayCa C--Cap

where each a; (i > 0) is a quadratic transform of a;—;.

Proof: The second assertion follows from the first, since p; = pa, Ny is a
non-maximal prime (because py Na = p whereas o; dominates «), and {(a1)p, =
ap, 50 that we can apply the first assertion to find a quadratic transform a; of
oy with as C ap, ete. etc. The first assertion follows from the fact that the map




X — Spec(a) obtained by blowing up the maximal ideal m of « is surjective
and proper. Or, we can argue directly as follows.
The graded ring

9rm(e/p) = P (m" + p)/(m™+! 4 p)
n>0

is not artinian, hence has non-nilpotent elements of degree one, i.e., there is an
z € m such that for all n > 0,

(1.21.2) g™ ¢ m"t 4 p,
In particular, ¢ ¢ m® + p, and so

A=afz™m] = U m* /2" C a,.

n>0
Set
P =pa,nA={J{pnm)/zm.
n>0
Then

l¢gmA+p =24+
since otherwise, for some n > 0, we would have
1e€mHfzm 4 (pAm®) /"

contradicting (1.21.2). So there exists a prime ideal ¢ in A containing mA4 + p’,
and oy = A4 C ay is 2 quadratic transform as desired.

Corollary (1.22). If 8 = a is a base point of a finitely supported ideal
I Ca, then dimf = dim a.

Proof: Let
a=aCa;C-Cap,=2

be the quadratic sequence from a to 8 (1.6), and argue by induction on n. There
being nothing to prove when n = 0, assume that n > 0 and that dimea,_; =
dim o For some x € m (the maximal ideal of a,.), 4 is of the form 8 = Aqg,
where 4 = a,_1[z7'm] and ¢ D m is a prime ideal in 4, Let Q C A be a
maximal ideal in A containing ¢. Then Q/mA is a maximal ideal in A/mA,
which is a finitely generated algebra over the field a,_; /m. It follows that A /Q
is a finite field extension of a,_; /m, and hence that

(1.22.1) dim Ag = dima,—; =dime
(cf. remarks preceding (1.6)).




Now if ¢ #'Q, then 8 is a localization of ¥ = Ag at a nor-maximal prime
ideal; but by (1.21) 4/I" is artinian, whence, by (1.5)(v) and (1.5)(iv)

g=(I"p="=1I°

ie., B is not a base point of I. Thus ¢ = Q, 8 = Ag, and by (1.22.1),
dim g3 = dim a. q.ed.

Remark (not used elsewhere): If f : X — Spec(a) is the map obtained by
blowing up I, then I is finitely supported if and only if there exists a sequence
o:X, N Xpo1 == Xy = Xo = Spec(a)

" 1
where each f; (i > 0) is obtained by blowing up a closed point of X;_; (for

example a base point of I) and such that X, dominates X, i.e., there is a map
g: X, — X such that

fog=fiofa0---0fqu;

in other words, “the indeterminacies of f~? can be eliminated by a finite num-
ber of point blow ups”. (Indeed, if o exists, the base points of I must be among
those which are blown up in ¢.) It follows that whenever a suitable local ver-
sion of resolution of singularities is available (for example if « is excellent and
equicharacteristic, with &/ m, a perfect field, of characteristic zero if dimea > 3,
[Hi, p.142. Thm.II}, [A’, p.149, (5.2.1)]) then I is finitely supported if (and by
(1.22) only if) every base point 8 of I satisfies dim 8§ = dim c. (For, the indeter-
minacies of f~? can then be eliminated by blowing up finitely many base points
of I, and I will have no other base points.)

(1.23). For non-zero ideals I, J in a, the complete ideal I * J is finitely
supported if and only if both I and J are. (This is because B(Z + J} = B(I) +
B(J), cf. (1.15).) Thus (and by (1.22)): '

Proposition (1.23). The finitely supported complete ideals in «, together
with the %-product, form a commutative monoid MY, isomorphic under the in-
jective monoid map (1.16) to a submonoid of the free commutative monoid F
genergted by all B » o« with dimB = dima. (F is the submonoid
{YngB | ng > 0 for all B} of the free abelian group GI generated by such

8)-

(1.24). A basic question now is to understand the structure of the monoid
MIZ. A partial result along these lines is given in Theorem (2.5) below; but it
raises more questions than it answers. When dim a = 2, there is a satisfactory
result, due to Zariski (Theorem (4.2)): M{ is itself a free commutative monoid.




§2. Simple complete ideals corresponding to infinitely near points.

We say that a complete ideal I in a commutative ring R is x-simple if I # R
and if whenever I = J « L with ideals J, I in R (cf. (1.13)) then either J = R
or L =R,

As in §1, we consider “points” a, 5, 7,... all having the same fraction field K.
Recall the definitions of “infinitely near points” (1.6) and of “complete trans-
form” (1.17). The main results in this section are contained in (2.1) and (2.5).

Proposition (2.1). For each pair of points a, 8 with dim o = dim 3 there
ezists o unigue complete ideal Pog in o such that for every v - a: ify < 3 then
the complete transform (Pag)” is *-simple, and otherwise (Pag)” =7.

Corollary (2.2). (i). 7 is ¢ base point of Pag if and only if @ < ¥ < G;
and hence Pag is finitely supported (1.20).
(). The ring afpap is ertinian.
(iii). Poq 5 the mazimal ideal m, of a.
(iv). For ally > a with dim+y = dim & we have

(paﬁ)? = Pys-

Proofof (2.2):  (i). 7 is a base point of Pog (1.8) iff (Pug)” # 7, L.e. (clearly,
or by (1.19)) iff (Pes)? # 7, ie. (by (2.1)) iff @ < v < 8. If & < B, there are
only finitely many such -, viz. the members of the quadratic sequence from «
to S (1.6); and otherwise there are no such 4. In any case, P,s has at most
finitely many base points.

(ii). This follows from (i) together with (1.21).
(iii). The ideal (m,)¥ = m, is *-simple; and for every ~ > & with 7 # & we
have (my)7 = 4.

(iv). For any § > v, we have that ((Pag)7)¢ = (Pap)® (cf. (1.18)(ii}), which
is x-simple if § < @ and equal to § otherwise.

Proofof (2.1): If § is not infinitely near to a, then Pos = a is an ideal in «
having the required properties; and by taking v = a in (2.1) we see that there
is no other such ideal. So suppose that a < 8, and let

a=qCoyC--Ca,=f

be the corresponding quadratic sequence {cf. (1.6)). We proceed by induction
on n,

Forn = 0,i.e. § = e, we have already noted that Po = M, has the required
behavior with respect to v > & (proof of (2.2)(iii)). That no other ideal in «
has this behavior follows easily from (2.3) below (with T = Ox).

For n > 0, we already have Pa,s (by the inductive hypothesis). Any v > a,
other than v = a, satisfies v > & for a unique quadratic transform & of . As in




the proof of (2.2)(iv), we find then that a »-simple complete ideal I in « satisfies
the defining properties of Pag if and only if: (i) I = p,, 3, and (i) I° = §
for every quadratic transform § of o except § = ;.

We consider the map f : X — Spec(a) obtained by blowing up m,.* The
quadratic transforms of « are just the local rings Ox ., of points z € f~1{m,}
(the closed fibre). Let y € f~{m,} be such that Ox , = a;. Since ay/Payp is
artinian (2.2)(ii), there exists a unique coherent O x-ideal Z(a,3) whose stalk
at y is Po,p and whose stalk at any = # y is Ox .. Thus, to complete the proof
of (2.1), it suffices to show:

Lernma (2.3). With f : X — Spec(a) as above, and m = my, let T be a
coherent Ox -ideal whose stalk T, is a complete Ox . -ideal for oll ¢ € X, with
I, = Ox, ifz ¢ f71{m}. Assume also that T ¢ mOx. Then there exists o
unique M-primary complete ideal I in a such that

(i): for every quadratic transform v = Ox . of a, we have

I'T=Iz;

and (ii): any complete ideal J C m such that J¥ =17 =T, for all v = Ox, as
in (i} must be of the form

J=mxmx%-.xmx],

Furthermore, if T is x-simple (in the sense that T # Ox and whenever
J # Ox and £ are Ox-ideals such that for oll 2 € X we have T, = T, * L.,
then L = Ox), then I is x-simple.

Proof: The Ox-ideal mOx is invertible, and hence for every n > 0 and
every x € X, m"1, is complete. Also, mOyx is very ample, so for some inte-
ger N > 0 the Ox-ideal m¥ T is generated by its global sections (Ha, p.121,
Thm. 5.17]; in other words, if for any n > 0, I, is the a-ideal

(2.3.1) L=H(X,mT)= (| m"L.C () Ox: =0
zeX zeX

then, for each z € X,
VI, = INOx...

So we can define r to be the least among all integers n > 0 such that for all
z € X, m"Z, is the completion (I,Ox . )™; and then we set

I=1,.

Let us check that this I is as asserted in (2.3).

5X = Proj S, where § is the graded a-algebra .., M2, In the language of models,

[2S2, p.116 fL.], [EGA I, §8], X is the projective model determined by any basis of M, and
F is the domination mapping to V{a) = Spec(a).




First of all, for any n > 0, any £ € o which is integral over I, is integral
over I,Ox ., C m*I, for every z € X, so that

'f € n m*Z, = I,
zeX

and thus I, is complete. Also, since Ox /T is supported in f~1{m}, there is an
integer N’ > 0 such that m®¥ Ox C T (this can be checked in each member of
a finite affine open covering of X); hence

’ !
mrtN c n mrty OX,:: c n m*T, = In,
zeX zeX

and so I, is m-primary, unless n = 0 and Z = Oy in which case 1 € I,, i.e.
I, = a. In particular, I = I, is complete and (since r > 0) m-primary.

Now note that r = ord,{I): for if z is the generic point of the closed fibre
f~Y(m), so that Ox . is just the valuation ring of ord,, then

ICanmOx,={£€a|ord.{¢) >r}=mT
and if I ¢ m™t! then for all z € X
mrI:: = (on,z)_ - (m"Hox,z)- = r+10X,::1

whence T C mOx, contrary to assumption. As in (1.11.1) we see then that for
any quadratic transform v = Ox . (z € f~*{m}), we have

I = (my) ™" (1)
and so =
= (my)""(I7)” = (mOx,.)""(W'Z,) = I,

i.e. (i) in (2.3) is satisfied.
Next we prove (2.3) (ii) (from which, in particular, the uniqueness of I
follows). Let s = ordo{J). Then for any quadratic transform Y= Ox gy, We

have, as above,
I, = J7 = (my)~*(Jy)~.

Hence

(2.3.2) m'Z, = (JOx,y)~
so that (since m*Z, = Ox, for all # € X such that = ¢ f~1{m})

Jc (I mZ, =1,
zeX

(cf. (2.3.1)); and then (since, as above, m*+¥’ C I, so that I,0x . = Ox, for

£ ¢ F{m)) o on-
z = 4sUX 2




for all z € X. By the definition of r, therefore, s > r, and for all z € X:
(2.3.3) . m'l, = (m*"I0x )",

Now, I claim, every element £ € I, is integral over J (whence I, = J since
J C I, and J is complete). Indeed, if v is any valuation of the fraction field X
of & whose valuation ring R, dominates « (i.e. R, D a and v(n) > 0 for all
n € m) then R, dominates O, for some y € f~1{m} (since f is a proper map,
cf. e.g. {253, p.120, (b)]}, so by (2.3.2) and (1.1}

¢ 1, C (WL,)R, = JR,;

and thus (cf. (1.1)) £ € J. Similarly, we see from (2.3.3) that I, (= J) is integral
over m*~"I, i.e. that
J=mx Mmook il
s—r times
* proving (ii). -

Finally, suppose that T is =-simple and that I = J * L where J, L are
complete ideals in a; and let us deduce that either J = aor L = a (ie. Iis
*-simple). Set

p = ordy(J), ¢=ord.(L).

Then, since I = (JL)~, (1.1) gives

(2.3.4) r=ord.(I} = ordys(J)+ ord.(L)
p+q,
and for all ¢ € X, since
(2.3.5) wPHZ, =wm'L, = (I0x.)”
= (JLOx.)~

we see that
T, = [(MmOx,2) PJOx ] ¥ [(MOx,.) "I LOx,z).

So if J, L are the O x-ideals
T =m?J0y, L=m"9LOy,

then either 7 = Ox or £L = Ox.
Suppose for example that £L = Ox. Then for all € X we have

LOX,:: = mqox,m
and consequently {cf. (2.3.5))

I =J?, 7=OX,2:




so that by (ii) above:
J=mrxmx*---xmsIC I
It follows at once (from (2.3.4)) that ¢ =0, ie. L=a. g.e.d.

Remarks (2.4) (not used elsewhere): For anyn > 0, the a-ideal I, defined
by (2.3.1) is contracted, i.e.

(2.4.1) In=H(X,1,0x) = () I.Ox,..
zeX

Moreover, if » > 7 (r as in the proof of (2.3)), then, for ali z € X,

m*Z, = M T(I.0x, )" = (M "I.0x,5)~ (since m* Oy, is principal)
C (InOx,z)_ C mﬂl'zs

so that m"Z, = (I,0x,:)";" and if 7, = Ox, then
mnox,z = mﬂIz = (Inox,z)_ = Inox,z

(the last equality e.g. by (1.19), since m*Ox . is a principal @ x,z-ideal). Thus
if

(2.4.2) Jn=( (] ILOx.)Na
zeX
I:#ox,.

then

I =J.n( n m*Ox.) = J, N m™
=X
Moreover, if Z, # Ox, for some z € f~1{m} (ie. T # Ox) then

Jo C (InOx}NacC m*Ox,Na=m"

(for the last equality, just note that ord,(¢) > n for any ¢ € m"Ox,). We
conclude that
(2.4.3) In=J. (n>r)

In particular:

(2.4.4)(ct. [2S;, top of p.373)). Suppose that § = { support of Ox/T } is
finite and non-empty,® and let ar be the semi-local Ting

ar = n Ox,z.
z€S

§ For any non-negative integers p > g, it follows easily from (2.3.1) that Ip= I, mp—q,
In particular, M*—"I. C I..

7As in the proof of (2.3), it follows that Il = I for any quadratic transform 4 = Ox,. of
«, whence, by (2.3) (i), In = M7 « I,

SEquivalently: if k& = af/M and L.(I) is the k-vector space of leading forms of ele-
ments £ € I such that ord«{¢) = r, then the set of zeros of L.(I) in the projective space
Proj(€D,, , M*/m**1} is finite and non-empty.




Then, forn>r
Iﬁ==(1&az)r1a.

* * *

The next result is the central one in this paper. It expresses a kind of “unique
factorization with possibly negative exponents”. In the two-dimensional case,
the exponents all turn out to be non-negative (Theorem (4.2)).

Theorem (2.5). For each finitely supported (cf. (1.20)) complete ideal I in
a point a there exists a unigque family of integers
(ng) = (ng(I))gra,dim f=dim &
such that ng = 0 for almost all (i.e. all but finitely many) B and such that

(H' n:é“’) +1=[ v

ng<0 ny, >0

where Pog is as in (2.1), []" denotes x-product over all § = « such thatng < 0,
ng<0

and similarly for " .
Ny >0
1t is straightforward to see that (2.5) can be restated as follows:

Theorem (2.5). For fized a and vaeriable 8 » a with dimf = dim «, the
images of the ideals p,g under the canonical injection described in (1.23) form
a basis of the free abelian group GI generated by all the (.

Proof of (2.5): Fixing a, set
F={y|v>a, dimy=dima}.

According to (1.23), the canonical image of p,g is the family of non-negative
integers (pog,y )ver where

= ordy((Pas)?) (cf. (1.1))
= ordy(op) (<. (22) (iv))

By (2.2} (i), then, pag,, = 0 unless v < B3; and by (2.2) (iii), page = 1 for all 8.

Now (2.5)' asserts that for any family of integers g = (gy)yer, with g, =0
for almost all v, there is a unique family of integers h = (hg)ger with hg = 0
for almost all § and such that forall y € T

Gy = Z hppap,y-
BeT

Papy = ordy((Pap)?)



For the existence of h, argue by induction on the number », of points - such
that g5 # 0 for some § » -: if ¥ > 0 then choose § such that gs # 0 and g5 = 0
for all § > 3, and set

9oy = Gy — 9pPapsy (Y E€T);

then g/ = g, unless v < 3, and moreover 95=0,50 pg <vpg :--.

For the uniqueness of h, assume that g, = 0 for all v, but that hy # 0
for some . Then for some v, h, # 0 and hg = O for all 8 » +, 8 # 7, so
gy = h, # 0, contradiction. qg.ed.

§3. The length of a complete ideal (dimension 2).

In this section we derive a formula of Hoskin and Deligne for the length of
an m,-primary complete ideal I in a two-dimensional regular local ring ¢, in
terms of the point basis of I,? and deduce a number of consequences, some of
which will be needed in §4.

We denote the length of an a-module M by A,(M). If B is a point infinitely
near t0 a (i.e. a C § C fraction field of a, cf. note following (1.6)) then [3 : qf
denotes the (finite) degree of the residue field extension 8/mg > a/m,.

Theorem (3.1). [Ho, p.85, Thm.(5.2)], [D, p.22, Thm. (2.13)]. Let @ be a
two-dimensional reqular local ring, with mazimal ideal m, and let I be a complete
m-primary ideal with point basis

B(I) = {rg}sra cf. (1.8).
Then rg = 0 for all but finitely many B (i.e. I is finitely supported, cf. (1.20)),
and
AolafI) = Z[ﬁ talre(rg +1)/2.
B

Proof: From (1.5} (ii) it follows that at most finitely many quadratic trans-
forms of a, say ay,as,..., &y, are base points of I. Let

Ii=1I% = (Ioy)(Ia;)™' (1<i<n),

$Geometrically speaking, the length of I is the number of conditions imposed on curves
of sufficiently high degree by requiring their local equations to lie in I. In other words, if
o is the local ring of a point z on a non-singular projectively embedded surface X over an
algebraically closed field k, and T is the x-ideal whose stalk at z is I and which coincides
with Ox at all points other than &, then for sufficiently large n there is an exact sequence

0 — HO(X,Z(n)) — H(X,0x(n)) — H(X,Ox(n)/I(n)) — o,
and, since the support of Ox /T is the single point #, we have, for all n,
dimy H(X, Ox(n)/I(n)) = dimx(a/1)




and set f; = [a; : ). By a theorem of Zariski, (ZS,, p.381, Prop.5}, {L, p.209,
(6.5)], the ideal Ia; is complete, whence so is I;.
It is clear (cf. (1.9) (a)) that Theorem (3.1) implies:

(3.1.1) Aa(a/I) = -;-ra(ra + 1) + i f,-)\a'.(a,-/I,-).

i=1

On the other hand, the validity of (3.1.1) for all a and I implies (by a
straightforward induction) the validity of (3.1).

To prove (3.1.1), consider the map X — Spec(a) obtained by blowing up m.
Since I is complete, we deduce from (1.1) that

(3.1.2) HY(X,10x)= (] IOx. =L
ze€X

(For another proof, cf. [L, p.208, Prop.(6.2)]). The argument which follows
applies to any I satisfying (3.1.2), i.e. to any I which is “contracted from X » 10
Using the affine open covering

X = Spec(afb/c]) U Spec(afc/b])

where b, ¢ € a generate m, one checks that H'(X,0x) = 0 (cf. e.g. [L, p.200]),
and that for any coherent @ x-module F, H*(X,F) = 0 (since the Cech complex
corresponding to the covering vanishes in dimension # 0,1). There exists an
exact sequence of the form

0 — F— O —I10x — 0,
whence an exact sequence
0= H\(X,0%) — H'(X,I0x) — H(X,F) =0

so that
(3.1.3) HY(X,I0x) =0.

Now with
r=rqe = orde(l)

we have an exact sequence
00— I0x — mOx — erx/IOx —0
whence an exact sequence

(3.1.4) 0~ HO(X,IOx) — HX, m"Ox) — HO(X,wOx/IOx) — 0

101t also applies, with slight modifications, when « is replaced by any local ring of a two-
dimensional {pseudo-) rational singularity. )



(where the 0 on the right comes from (3.1.3)). By (3.1.2)
BHYX,10x) =1,
and also (as in easily seen)
HY (X, m"0x) =
Thus
(3-1.5) Aa(a/T) — (1/2)r(r + 1) = Aa("/I) = A (H*(X, WOy /IOx)).

Moreover, for each z in the closed fibre X ®, (a/m}, the local ring 8 = @ X,z 18
a quadratic transform of a, mg@ is invertible, and we have, as in (1.11.1),

(3.1.6) I = (mg)~"(I8).

Hence m"Ox /IOy is supported in the finite set of closed points zi,...2, € X
whose local rings are
Oxz, =i (1<i<n),

and for each i, the stalk (m"Ox/IOx,;)., is isomorphic to a;/I;, so that

(3.1.7) Ma{HO(X, mOx/I0x)) = i AofaifI;)
= Z fida,; (o /T).
Together, (3.1.5) and (3.1.7) give (3.1.1). g.ed.

Henceforth we write “\” for “A,”.

Corollary (3.2). Let I be an m-primary ideal satisfying (3.1.2) (e.g. I com-
plete), and set r = ordo(I). Then any minimal generating set of I contains r+-1
elements; in other words:

MI/mI) = (say) p(I) =7 + 1.

Proof: The ideal mI is also contracted from X (cf. [ZS;, p.376, Cor.1],
or [L, p.209, Thm.(7.2)]), so we can replace I by mI in (3.1. 1) (cf. remarks
following (3.1.2)). Since

ordo(mI) = ordo(I)+1=r+1,
and since for all quadratic transforms g of a, we have

(mI)P = (mg)~""!(mIB) = (m@)~"(IB) = I




{cf. (3.1.6)), we deduce that
MI/ml) = Nafml) - Xa/I) = (r+1)(r+2)~ zr(r+1)
= r4+1,
proving (3.2).

Remark (3.3): In [Hy,Thm. 2.1}, Huneke and Sally prove a converse to
(3.2), at least when a/m is infinite: if I is an m-primary ideal with p(I) =
ord(f) + 1 then I satisfies (3.1.2). In their proof, they point out that for any
m-primary I,

Torg(afI,afm) = (I : m)/I

{as can be seen from the Koszul reselution of ¢/ m), and then, calculating Tor;
via an exact sequence

0 a* o ma—afl»0 (4= p(l),

they conclude that :
(T : m)/T) = p(T) - 1.

Hence:
Corollary (3.4). For any I as in (3.2),
AT : m}/I) = ordo(I).

Corollaries (3.2) and (3.4) yield a proof, suggested to me by Craig Huneke,
of the following result of Zariski:

Corollary (3.5). (cf. (283, p.368, Prop.3]). Let I andr = ord,(I) be as in
(3.2), and assume that I # m(I: m). Then

AMI/mmHinI)=1.
Proof: If I satisfies (3.1.2), then

(3.5.1) zel:m < zmCl+z2mOx CI0x
ST C HD(X,(MOx)_IIOx)

and consequently I : m also satisfies (3.1.2), so that by (3.4) and (3.2)

r=M{T :m)/I} < A({I:m)/m(]:m)
= ord(J:m)+1<r+1.

Hence
(3.5.2) ordo(l:m)=r




and
(3.5.3) A(Z/m(I : m})

AL : m)/m(I : m)) — A((1: m)/T)
1.

From (3.5.2) we get
m(I: m)C mH nIgi
and so {3.5.3) gives the conclusion.

Remark(3.6): Since I': m satisfies (3.1.2) whenever I does (proof of (3.5)),
(3.4) can be restated as:

Me/I) = Zord (I:m")

n=0

* * *

We conclude with some remarks on “intersection numbers” and Hilbert-
Samuel functions of complete finitely supported ideals I,J in a. {cf. (4.1)}(C)
below).

If I, J have respective point bases

B(I) = {rs}pra B() ={s5}pra
then we set

(1-7)= Z{ﬁ alrgsg.

This integer can be interpreted as the “intersection multiplicity at a of generic
member of I and a generic member of J” (cf. e.g. [N, p.189, Thm.8]). Its negative
is the total intersection number of the curves defined by the ideals IOy, JOy,
where g : ¥ — Spec(a) is any proper birational map such that IOy and JOy
are both invertible (cf. e.g. {D, p.17, Thm.(2.9)]).

The following corollaries of (3.1) may be compared with [L, p.223, (13.1)}{c)]
and [L, p.253, (23.2)] respectively.

Corollary (3.7). If LJ are complete finitely supported ideals in a, then
Ma/IT) = XMa/I)+ XMa/T)+ (I - J).
Proof: The ideal I.J is complete {cf. (4.1)(A) below) and
B(IJ) =B(I) +B(J)
(cf. (1.9)(b)). So we need only note that
(rg +sp)(rg + sp+ 1) = ra(rg+ 1) + sp(sp41) + 2rpsp,
and apply (3.1).




Corollary (3.8). If I is a complete finitely supported ideal in a, then for
every n 2 0 we have

NI I = (I - 1) + Ma/I).

Proof: The ideal I™ is complete for all n > 0 (cf. (4.1)}(A) below), so (3.7)
with J = I™ gives

ML 1) = Mo/ I™) = Ma/I7) Ma/T)+(I-I7)

= Ma/I)+n(I 1)

il

(where the last equality follows from B(I"} = nB(I)). q.e.d.

§4. Unique factorization for complete ideals (dimension 2).

We assume that all points «,f3,... are two-dimensional regular local rings
with the same fraction field K. As noted following (1.6), 8 is then infinitely
near to o if and only if 8 D a.

The theory of complete ideals in the two-dimensional case is due to Zariski
[2],{ZS2, Appendix 5.]. (Generalizations to rational singularities can be found
in [L, Chapters II, V].) Here we review some of the main results in light of the
preceding material in this paper. .

First of all, concerning notions introduced in §1 above we have the following
simplifications:

(4.1) (A). Any product of complete ideals in « is again complete (in other
words, the +-product of (1.13) is just the usual product), [ZS;, p.385, Thm.2'],
L, (7.1)].

(B). If I is a complete ideal in & and 8 2 «, then If is a complete ideal in
B (and hence I? = I? cf. (1.5),(1.17)), {ZS2, p.381, Prop.5), [L, {6.5)].

(C). An ideal I in a is finitely supported if (cf. (3.1) and (1.10)) and only
if (cf. (1.21)) a/I is artinian (i.e. « contains some power Mm% of the maximal
ideal m,).

We will say that an ideal L in a is simple if L # o and if whenever L = IJ
with ideals I, Jinathen I =aor J = a.

Since a is a two-dimensional local unique factorization domain, every non-
zero ideal in « is uniquely a product I.J, with I principal and J containing some
power my. Hence a simple ideal must be either principal (and prime) or (by
(4.1)(C)) finitely supported.

The main results to be proved here are:

Theorem (4.2). [ZS;, p.386, Thm.3},{L, p.244, Thm.(20.1)).
When dim o = 2, all the integers ng(I) in Theorem (2.5) are > 0, and conse-
quently every My-primary complete ideal in a is in a unique way a product of
simple complete ideals of the form pap (B 2 a).



Corollary (4.3). [ZS;, p.389,(B)]. Every my-primary simple  complete
ideal is of the form pog for some § D a.

Corollary (4.4). [ZS;, p.386, Lemma 6],{L, p.247, Prop.(21.5)]. If I is
a simple complete ideal in a, and B 2 «, then the transform I? is a simple
complete ideal in 3, unless I® = (.

Proof of (4.4): If I is principal use (1.5)(1). If I is m,-primary,
use (4.3), (4.1)(B), and (2.2)(iv).

Proof of (4.2): In view of (4.1)(A), it is clear from (2.5) that we can char-
acterize the integers ng(I) as follows:
Let M be the monoid of complete ideals in o containing some power m®

(cf. (1.23) and (4.1}(A),(C)) and let
(4.2.1) vg: ML —Z

be a monotd homomorphism such that fory D a

(4.2.2) vg(Pay) = 1 if ~4=p
= 0 if 7#pB

Then for all I € ML, we have
va(I) = ng(I).

Thus, to prove (4.2), it will suffice to exhibit (for each 8) such a map vg
which satisfies in addition the property:

(4.2.3) vg(I)>0  forall TIe ML

For this purpose we use the “characteristic form” ¢(I) of a non-zero ideal
I C a, defined as follows (cf. [ZS;, p.363]): we fix a basis (z,y) of m = m,, and
correspondingly identify the graded ring @, m"®/m"*! with the polynomial
ring k[X,Y] (k = a/m); then, with r = ord,(I), we have an identification of
the k-vector space
(I+w ) /mmtl = r/mmting

with a k-vector space L(I) consisting of forms of degree r in k[X,Y], and we
let ¢(I) be a greatest common divisor of all the members of L(I). Thus ¢(I) is
a form, uniquely determined up to multiplication by a non-zero element in k;
and the degree s{I) of ¢(I) satisfies

(4.2.4) s(I) < orda(I).

We define:
vg(I) = ordg(IP) — s(IP).




Then (4.2.3) is immediate (by (4.2.4)}, and the fact that vs is a monoid homo-
morphism (i.e. v3(IJ) = vg(I)+vg(J)) follows from the easily proved identities

L(IN) = LDHL)
e(IJ) = ace(J) O#ack

together with the fact that (IJ)? = IAJ8 (cf. (1.5)(iii)).
It remains then to prove (4.2.2). Since (by (4.1)(B) and (2.2))

(Pap)? = Pgp = my,

it is clear that vg(Pas) = 1. If a C v and B Z 4, then, by definition (cf. (2.1))
(Pay)? = (3, and s0 vg(Pay) = 0. Suppose then that « C 8 C . Then (cf. (2.2),
(4.1)(B)):

(pa-r)'@ = Pgy # Mg,

and furthermore pg., is complete and *-simple (<f. {2.1)), hence not divisible by
My (i.e. not of the form mgJ for some SB-ideal J). What we have to show then
is that

ordg(Ppy) — s(Psy) = 0

or, equivalently, that the (8/mg)-vector space L(pg,) has dimension one.

But this is a special case of Corollary (3.5). g.ed.
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