Compact operators

Definition. A bounded linear operator A on a Hilbert space \mathcal{H} is *compact* if it has any of the following properties:

- (1) There exists a sequence F_1, F_2, \ldots of finite rank operators such that $||F_n A||_{\mathcal{H} \to \mathcal{H}} \to 0$ as $n \to \infty$.
- (2) For any bounded sequence w_1, w_2, \ldots in \mathcal{H} , the sequence Aw_1, Aw_2, \ldots has a convergent subsequence.
- (3) For any sequence w_1, w_2, \ldots converging weakly to any w, we have $||A(w_n w)||_{\mathcal{H}} \to 0$.

Theorem. The properties (1), (2), and (3) are all equivalent.

Proof. (1) \Rightarrow (2): Use a diagonal argument to construct a subsequence w_{11}, w_{22}, \ldots such that $F_n w_{11}, F_n w_{22}, \ldots$ converges for each *n*. To prove that Aw_{11}, Aw_{22}, \ldots is Cauchy, write

 $||Aw_{kk} - Aw_{\ell\ell}|| \le ||(A - F_n)w_{kk}|| + ||F_n(w_{kk} - w_{\ell\ell})|| + ||(A - F_n)w_{\ell\ell}||.$

Given $\varepsilon > 0$, first choose *n* large enough that the first and last terms on the right are less than $\varepsilon/3$, and then choose *M* large enough that the middle term is less than $\varepsilon/3$ when $k, \ell \ge M$.

 $(2) \Rightarrow (3)$: A weakly convergent sequence is bounded by the Uniform Boundedness Principle, so Aw_1, Aw_2, \ldots has a convergent subsequence. But any convergent subsequence of Aw_1, Aw_2, \ldots must converge to Aw, since it converges weakly to Aw. Hence Aw_1, Aw_2, \ldots converges to Aw.

 $(3) \Rightarrow (1)$: Define an orthonormal sequence e_1, e_2, \ldots in \mathcal{H} as follows. First, take e_1 such that

$$||Ae_1||_{\mathcal{H}} \ge \frac{1}{2} ||A||_{\mathcal{H} \to \mathcal{H}}$$

Then proceed inductively: having defined e_1, \ldots, e_n , take e_{n+1} such that

 $||Ae_{n+1}||_{\mathcal{H}} \ge \frac{1}{2} ||A(I - P_n)||_{\mathcal{H} \to \mathcal{H}},$

where P_n denotes orthogonal projection onto the span of $\{e_1, \ldots, e_n\}$. Since e_1, e_2, \ldots converges weakly to 0, it follows that $||Ae_n||_{\mathcal{H}} \to 0$, and hence $||A(I - P_n)||_{\mathcal{H} \to \mathcal{H}} \to 0$ and we may take $F_n = AP_n$. \Box

The above proof follows Section 3.1 of [Sim]. That reference also covers compact operators on a Banach space, as does [Con]. For a general Banach space one has only $(1) \Rightarrow (2) \Rightarrow (3)$. If the space is reflexive, then $(3) \Rightarrow (2)$. If it has a Schauder basis, then $(2) \Rightarrow (1)$.

References

[[]Con] John B. Conway, A Course in Functional Analysis, Second Edition, 1990.

[[]Sim] Barry Simon, Operator Theory: A Comprehensive Course in Analysis, Part 4, 2015.

Kiril Datchev, March 13, 2025. Questions, comments, and corrections are gratefully received at kdatchev@purdue.edu.