
Fréchet spaces

The concept of Hilbert space generalizes and systematizes the geometric structure of Euclidean
spaces and L2 spaces. The concept of Banach space takes the generalization a step further, including
such spaces as continuous and differentiable functions on a compact set and Lp spaces.

The concept of Fréchet space goes yet further, allowing one to study functions on open sets; this is
important because many properties of functions are better on open sets, for instance complex differ-
entiable functions are analytic. The price to pay is that at each step of generalization we encompass
nastier spaces, and the abstract results are correspondingly more complicated and weaker.

These notes develop the properties of Fréchet space just far enough to be able to understand
Example 2.4.3 of [Hör]. That example gives a necessary condition for a constant-coefficient differential
operator to improve regularity. The condition is also sufficient but a lot more is involved in the proof
of sufficiency: see Theorem 6.36 of [Fol] or Theorem III.2.1 of [Tay].

Below, we start with the basic definitions, followed by examples and exercises with hints. The
basic definition is that a Fréchet space is a complete metric space with the metric defined by a family
of seminorms, a seminorm being a slightly weaker version of a norm. An important feature is that
continuous functions are characterized by a boundedness condition. We conclude with the Open
Mapping Theorem, which is the big machine used in Example 2.4.3 of [Hör].

See Section V.2 of [ReSi] for more on Fréchet spaces, or Sections 2.2 and 2.4 of [Hör] for even more.

Definitions. Let X be a vector space over F. A function ∥ · ∥ : X → [0,∞) is called a seminorm if it
obeys

∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∥cx∥ = |c|∥x∥,
for all x, y ∈ X, c ∈ F; i.e. the same properties as a norm except we allow ∥x∥ = 0 for x ̸= 0.

Let (∥ · ∥k)∞k=1 be a sequence of seminorms on X which separates points, in the sense that

∥x∥k = 0 for all k =⇒ x = 0.

It is convenient to suppose further that for all k and x we have

∥x∥k ≤ ∥x∥k+1.

(The general case can be reduced to this one by defining ∥x∥′k = max1≤j≤k ∥x∥j .) Define a metric on
X by putting

d(x, y) = d(x− y), d(x) =

∞∑
k=1

2−k ∥x∥k
1 + ∥x∥k

; (1)

to prove the triangle inequality, prove

f(t) =
t

1 + t
=⇒ f(t) ≤ f(t+ s) ≤ f(t) + f(s) for all t, s ≥ 0,

by clearing denominators, and deduce d(x+ y) ≤ d(x) + d(y).

If (X, d) is complete, then we say that (X, d) is a Fréchet space.
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Examples. Let Ω ⊂ Rd be open, and let K1 ⊂ K2 ⊂ . . . be compact subset of Ω such that
Ω =

⋃∞
k=1Kk. For example, we may let

Kk = {x ∈ Ω: |x| ≤ k and dist(x, ∂Ω) ≥ 1/k}.

The following are all Fréchet spaces.

1. Let X = C(Ω), the set of continuous functions on Ω, and let

∥u∥k = max
Kk

|u|.

2. Let X = Cm(Ω), the set of m times continuously differentiable functions on Ω, and let

∥u∥k = max
|α|≤m

max
x∈Kk

|∂αu(x)|.

3. Let X = C∞(Ω), the set of infinitely differentiable functions on Ω, and let

∥u∥k = max
|α|≤k

max
x∈Kk

|∂αu(x)|.

Exercises.

1) Let (X, d) be a metric vector space as above, and let x1, x2, . . . be a sequence in X. Prove
that d(xj) → 0 if and only if ∥xj∥k → 0 for all k.

2) Let X and Y be metric vector spaces as above, and let T : X → Y be linear. Prove that T is
continuous if and only if for any k there are k′ and C such that

∥Tx∥k ≤ C∥x∥k′ .
3) Let (X, ∥ · ∥) be a Banach space, and define d by (1) with ∥ · ∥k = ∥ · ∥ for all k, i.e. all the

seminorms are just the Banach space norm over and over. Prove that the resulting (X, d) is a
Fréchet space with the same convergent sequences as (X, ∥ · ∥).

Hints: Prove that d(x) ≤ ∥x∥k + 2−k for any k and that d(x) ≤ 2−k−ℓ =⇒ ∥x∥k ≤ 2−ℓ/(1− 2−ℓ) for
any k and ℓ. Deduce 1), and then use 1) to prove 2) and 3); proving 2) is similar to proving
that a linear function between normed vector spaces is continuous if and only if it is bounded.

Theorem 1 (Baire Category Theorem). If X is a complete metric space and
⋃∞

n=1An = X, then

there is n such that An has nonempty interior.

This is proved in many places; an elegant version is Theorem 9.1 of [Oxt]. We use it to prove:

Theorem 2 (Open Mapping Theorem). If X and Y are Fréchet spaces, and if T : X → Y is a
surjective continuous linear function, then T (U) ⊂ Y is open for every open U ⊂ X.

This is also proved in many places. The proof below is similar to that of Theorem III.10 of [ReSi]
and Theorem II.5 of [Yos]. See also Section 2.4 of [Hör].

Proof. We use the notation Xr(x) = {x′ ∈ X : dX(x′ − x) < r}, Xr = Xr(0), and similarly for Y .

(1) Since open sets are made up of open balls, it is enough to show that for any r > 0 and x ∈ X,
there is r′ > 0 such that

Yr′(y) ⊂ T (Xr(x)).
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(2) Since T is linear, it is enough to show that for any r > 0, there is r′ > 0 such that

Yr′ ⊂ T (Xr).

(3) We claim that it is enough to show that T (Xr) has nonempty interior for any r > 0.

Exercise. Let X and Y be Fréchet spaces, let T ∈ L(X,Y ), let y ∈ Y , and let r, r′ > 0. Show that if
Yr′(y) ⊂ T (Xr), then Yr′ ⊂ T (X2r).

(4) We claim that T (Xr) has nonempty interior for any r > 0. Indeed, given r > 0, X =⋃∞
n=1 nXr, because, for any x ∈ X, dX(x/n) ≤ 1/n → 0 as n → ∞. Since T is surjective,

Y =
⋃∞

n=1 T (nXr). By the Baire category theorem, T (nXr) has nonempty interior for some
n. But

T (nXr) = nT (Xr) = nT (Xr),

where the first equals follows from linearity of T , and the second from the fact that yj → y if
and only if nyj → ny, which in turn follows from d(yj) → 0 if and only if ∥yj∥K → 0 for all

K. Hence T (Xr) has nonempty interior.

(5) The final step is showing that T (Xr) ⊂ T (X2r), and hence that T (X2r) has nonempty interior.

Take y ∈ T (Xr). We will find x1 ∈ Xr, x2 ∈ Xr/2, . . . , xj ∈ Xr/2j , . . . , such that

lim
N→∞

dY (y − sN ) = 0,

where sN = x1 + · · · + xN . Since X is complete, and d(sN − sM ) < 2−Nr when M ≥ N , it
follows that there is x such that dX(x− sN ) → 0. Since T is continuous, Tx = y.

It remains to construct the xj . For this, take a sequence r′j → 0 such that

Yr′j ⊂ T (Xr/2j );

such an r′j exists for each j because each T (Xr/2j ) has nonempty interior and we can proceed

as in the Exercise from Step (3). Now:

(i) Take x1 ∈ Xr such that y − Tx1 ∈ Yr′1 ⊂ T (Xr/2).

(ii) Take x2 ∈ Xr/2 such that y − Ts2 ∈ Yr′2 ⊂ T (Xr/4).

(iii) Continue in this manner, taking xk ∈ Xr/2k such that y − Tsk ∈ Yr′k ⊂ T (Xr/2k).

We have arranged dY (y − sN ) < r′N , which tends to 0 as N → ∞, as desired.

□
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[Yos] Kôsaku Yosida, Functional Analysis, 1970.

https://lucris.lub.lu.se/ws/portalfiles/portal/124277769/HormanderLinearFunctionalAnalysis.pdf

	References

