The Hahn—Banach Theorem

The Hahn—Banach theorem has many forms and many important consequences. Here are a few
relatively simple and fun ones.

Theorem 1. Let V' be a real vector space. Let N: V — R be sublinear, in the sense that
N(azx +by) < aN(x)+bN(y), for any x,y €V, a,b> 0.
Let W be a subspace of V and £: W — R a linear function such that
l(x) < N(z), for any x € W.
Then £ can be extended to L: V — R in such a way that
L(z) < N(x), for anyx € V.

Proof. The main step is showing that if z & W, then ¢ can be extended to Span(W U {z}). For this
we must show that it is possible to define L(z) in such a way that for all z € W and a € R we have

l(z) +aL(z) < N(z + az); (1)
once that is done we can define L(z + az) = ¢(x) + aL(z), because the representation of an element in
Span(W U {z}) as = + az is unique.

If a > 0, then satisfying (1) is the same as satisfying
L(z) < a Y (N(z + az) — £(z)).
If a < 0, thenthe requirement is
L(z) > a Y (N(z + az) — £(z)).
To check that these requirements can be simulatenously satisfied, we must check that
b (Ely) — Ny — b2)) < a” (N(z + a2) — £(z),
for all z,y € W and a,b > 0. In other words, we must check that
al(y) + bl(x) < aN(y — bz) + bN(z + az).
For this, write
al(y) + bl(z) = L(ay + bx) < N(ay + bzx) < aN(y — bz) + DN (z + az),
where for the last step we used (2) with z replaced by y — bx and y replaced by x + az.
Now order all extensions by inclusion, where (W’ ¢') C (W, ¢") if W Cc W" and if the graph of ¢
is a subset of the graph of ¢”. Each totally ordered family of extensions is bounded by the union of

that family, so by Zorn’s Lemma there is a maximal element (Wiax, #max), and since (Wiax, fmax) iS
not a proper subset of any extension we must have Wyax = V. g

A stronger assumption on N allows us to bound |L(z)|, and also to cover the complex case.
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Theorem 2. Let V be a vector space over F, with F =R or C. Let N: V — [0,00) be sublinear, in
the sense that
N(az +by) < [alN(z) + [N (y), for any z,y € V, a,b € F. (2)
Let W be a subspace of V and ¢: W — T a linear function such that
Rel(x) < N(x), for any z € W.
Then £ can be extended to L: V — R in such a way that

|L(x)| < N(z), for any x € V.

Proof. If F = R, then Re/l(x) = {(x ) and Theorem 1 yields an extension with L(x)
The remaining conclusion is L(z) > —N(z), and this follows from L(—z) < N(—=z)

N(x) for all x.

<
< N(z).

If F = C, then define a real-linear functional on W by fg(z) = Ref(z). As above, there is a
real-linear extension Lg: V — R obeying Lr(x) < N(x). Let
L(z) = Lg(z) — iLg(ix).
Then L|w = ¢ because z = Re z — i Re(iz). Next, L is complex linear because L(ix) = iL(z). Finally,

if L(z) # 0 then let A = %Eigl and write

|L(x)| = L(Az) = Lr(Ax) < N(A\x) < N(x),
where for the second equality we used Im L(Az) = 0 = Lr(iAz) = 0. O

Theorem 3 (Using linear functionals to measure distance). Let V' be a real of complex normed vector
space. Let Z C 'V be a subspace, and let v € V. There is £ € V* such that {(v) = d(v,Z) and
[0(x)| < d(x,Z) for allxz € V.

Proof. Let W be the span of v, and define N: V — R and £ € W* by
N(z)=d(z, Z2), l(cv) = eN(v).
By Theorem 2, and using N(z) < ||z, it is enough to check (2). If a # 0, then

N(ax) = inf ||ax — z|| = inf |lax — az|| = |a| inf ||z — z|| = |a|N(z).
2€Z 2€Z 2€Z
Meanwhile,

N(o+y) = inf oy =2l = _inf_Jlot+y—2—2] < inf o—al+ nf y— 2l = N@)+ N,

)

O

Exercise 1. Let V' be a complex normed vector space, and let u: V' — R be a continuous real-linear
functional. Prove that if v attains a maximum on the unit sphere at some zg, then u(izg) = 0.

Theorem 4 (A closed subspace is an intersection of hyperplanes). Let V' be a normed vector space,

let Z C'V be a subspace and let v € V. The following are equivalent:

(1) veZ.
(2) If t € V* and £z = 0, then £(v) = 0.

In other words, Z = ﬂ Ker(¢), where Z+ = {£ € V*: (|7 = 0}.
tezt



Proof. (1) = (2): | = 0 by continuity.

(2) = (1): If v ¢ Z, then d(v,Z) > 0, so Theorem 3 yields ¢ with the desired properties. O

Theorem 5 (Runge approximation). Let K C C be a compact set with connected complement. If f
s analytic in a neighborhood of K, then f can be uniformly approximated by polynomials in z.

Recall that the Stone-~Weierstrass Theorem cannot be applied here, because it requires the approx-
imating family to be closed under complex conjugation. The standard counterexample, which also
shows the relevance of requiring connectedness of C \ K, is that 1/z cannot be uniformly approxi-

mated on the unit circle by polynomials P(z) because f027r P(e)e?df = 0 for every polynomial P.

Exercise 2. Let K C C be the unit circle, and let N be an integer. Prove that there is ¢ € C(K)*
of norm 1 such that £(2") = 1 and £(2") = 0 for every integer n # N. Do this in two ways, once
by invoking Theorem 3 and once by defining the functional via an explicit formula and checking the
relevant properties directly.

Proof of Theorem 5. Let V = C(K), let Z C C(K) be the space of polynomials in z, and let ¢ be an
element of V* that vanishes on Z. By Theorem 4, it is enough to check that ¢(f) = 0. By the Riesz
representation theorem (see Theorem 6.19 of [Rud]) there is a complex Borel measure py on K such
that £(g) = [ gdue for every g € C(K).

Since a complex measure is a linear combination of ordinary measures, the problem thus reduces
to showing that for any Borel measure p on K, we have

/ 2"du(z) =0, forn=0,1,2,... = / f(z)du(z) = 0.
K K

By the Cauchy integral formula,

[t = [ [ 1800,

where T is any contour enclosing K, contained in the set where f is analytic.! By switching the order
of integration, we see that it is enough to show that the function

g(w) = /K iu(zi

vanishes on C\ K. But if w is sufficiently large, specifically |w| > max{|z|: z € K}, then

ow) = | g;(;)"duw:gw—"—l [ aut) =0

On the other hand, ¢ is analytic (check complex differentiability directly from the definition), and
C\ K is connected, so g must vanish identically on C\ K (because the zeroes of a nonconstant analytic
function are isolated; see Theorem 10.18 of [Rud]). O

ITo construct such a T", cover K by a finite collection of open rectangles whose closures are contained in the set where
f is analytic, and let I" be the boundary of the union of these rectangles. See Theorem 13.5 of [Rud] for a more detailed
and general construction.



The above proof is adapted from Theorem 13.6 of [Rud], which also shows how to handle the case
where C\ K is not connected, by replacing the polynomials with suitable rational functions. Example
2.3.10 in [HOr| contains a similar proof: in place of the contour I', it uses a smooth cutoff function and
a Cauchy integral formula for compactly supported functions. Near that example in [Hor| are several
other fun applications of the Hahn—Banach Theorem.

Mergelyan’s theorem improves Runge’s theorem by weakening its hypotheses. Specifically, instead
of requiring that f be analytic near K, it requires only that f be continuous on K and analytic on the
interior of K. It is the final theorem of [Rud], and its final step is an application of Runge’s theorem.
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