
The Hahn–Banach Theorem

The Hahn–Banach theorem has many forms and many important consequences. Here are a few
relatively simple and fun ones.

Theorem 1. Let V be a real vector space. Let N : V → R be sublinear, in the sense that

N(ax+ by) ≤ aN(x) + bN(y), for any x, y ∈ V, a, b ≥ 0.

Let W be a subspace of V and ℓ : W → R a linear function such that

ℓ(x) ≤ N(x), for any x ∈ W.

Then ℓ can be extended to L : V → R in such a way that

L(x) ≤ N(x), for any x ∈ V.

Proof. The main step is showing that if z ̸∈ W , then ℓ can be extended to Span(W ∪ {z}). For this
we must show that it is possible to define L(z) in such a way that for all x ∈ W and a ∈ R we have

ℓ(x) + aL(z) ≤ N(x+ az); (1)

once that is done we can define L(x+ az) = ℓ(x)+ aL(z), because the representation of an element in
Span(W ∪ {z}) as x+ az is unique.

If a > 0, then satisfying (1) is the same as satisfying

L(z) ≤ a−1(N(x+ az)− ℓ(x)).

If a < 0, thenthe requirement is

L(z) ≥ a−1(N(x+ az)− ℓ(x)).

To check that these requirements can be simulatenously satisfied, we must check that

b−1(ℓ(y)−N(y − bz)) ≤ a−1(N(x+ az)− ℓ(x)),

for all x, y ∈ W and a, b > 0. In other words, we must check that

aℓ(y) + bℓ(x) ≤ aN(y − bz) + bN(x+ az).

For this, write

aℓ(y) + bℓ(x) = ℓ(ay + bx) ≤ N(ay + bx) ≤ aN(y − bz) + bN(x+ az),

where for the last step we used (2) with x replaced by y − bx and y replaced by x+ az.

Now order all extensions by inclusion, where (W ′, ℓ′) ⊂ (W ′′, ℓ′′) if W ′ ⊂ W ′′ and if the graph of ℓ′

is a subset of the graph of ℓ′′. Each totally ordered family of extensions is bounded by the union of
that family, so by Zorn’s Lemma there is a maximal element (Wmax, ℓmax), and since (Wmax, ℓmax) is
not a proper subset of any extension we must have Wmax = V . □

A stronger assumption on N allows us to bound |L(x)|, and also to cover the complex case.
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Theorem 2. Let V be a vector space over F, with F = R or C. Let N : V → [0,∞) be sublinear, in
the sense that

N(ax+ by) ≤ |a|N(x) + |b|N(y), for any x, y ∈ V, a, b ∈ F. (2)

Let W be a subspace of V and ℓ : W → F a linear function such that

Re ℓ(x) ≤ N(x), for any x ∈ W.

Then ℓ can be extended to L : V → R in such a way that

|L(x)| ≤ N(x), for any x ∈ V.

Proof. If F = R, then Re ℓ(x) = ℓ(x) and Theorem 1 yields an extension with L(x) ≤ N(x) for all x.
The remaining conclusion is L(x) ≥ −N(x), and this follows from L(−x) ≤ N(−x) ≤ N(x).

If F = C, then define a real-linear functional on W by ℓR(x) = Re ℓ(x). As above, there is a
real-linear extension LR : V → R obeying LR(x) ≤ N(x). Let

L(x) = LR(x)− iLR(ix).

Then L|W = ℓ because z = Re z − iRe(iz). Next, L is complex linear because L(ix) = iL(x). Finally,

if L(x) ̸= 0 then let λ = |L(x)|
L(x) and write

|L(x)| = L(λx) = LR(λx) ≤ N(λx) ≤ N(x),

where for the second equality we used ImL(λx) = 0 =⇒ LR(iλx) = 0. □

Theorem 3 (Using linear functionals to measure distance). Let V be a real of complex normed vector
space. Let Z ⊂ V be a subspace, and let v ∈ V . There is ℓ ∈ V ∗ such that ℓ(v) = d(v, Z) and
|ℓ(x)| ≤ d(x, Z) for all x ∈ V .

Proof. Let W be the span of v, and define N : V → R and ℓ ∈ W ∗ by

N(x) = d(x, Z), ℓ(cv) = cN(v).

By Theorem 2, and using N(x) ≤ ∥x∥, it is enough to check (2). If a ̸= 0, then

N(ax) = inf
z∈Z

∥ax− z∥ = inf
z∈Z

∥ax− az∥ = |a| inf
z∈Z

∥x− z∥ = |a|N(x).

Meanwhile,

N(x+ y) = inf
z∈Z

∥x+ y− z∥ = inf
z1,z2∈Z

∥x+ y− z1 − z2∥ ≤ inf
z1∈Z

∥x− z1∥+ inf
z2∈Z

∥y− z2∥ = N(x) +N(y).

□

Exercise 1. Let V be a complex normed vector space, and let u : V → R be a continuous real-linear
functional. Prove that if u attains a maximum on the unit sphere at some x0, then u(ix0) = 0.

Theorem 4 (A closed subspace is an intersection of hyperplanes). Let V be a normed vector space,
let Z ⊂ V be a subspace and let v ∈ V . The following are equivalent:

(1) v ∈ Z.
(2) If ℓ ∈ V ∗ and ℓ|Z = 0, then ℓ(v) = 0.

In other words, Z =
⋂

ℓ∈Z⊥

Ker(ℓ), where Z⊥ = {ℓ ∈ V ∗ : ℓ|Z = 0}.
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Proof. (1) =⇒ (2): ℓ|Z = 0 by continuity.

(2) =⇒ (1): If v /∈ Z, then d(v, Z) > 0, so Theorem 3 yields ℓ with the desired properties. □

Theorem 5 (Runge approximation). Let K ⊂ C be a compact set with connected complement. If f
is analytic in a neighborhood of K, then f can be uniformly approximated by polynomials in z.

Recall that the Stone–Weierstrass Theorem cannot be applied here, because it requires the approx-
imating family to be closed under complex conjugation. The standard counterexample, which also
shows the relevance of requiring connectedness of C \ K, is that 1/z cannot be uniformly approxi-

mated on the unit circle by polynomials P (z) because
∫ 2π
0 P (eiθ)eiθdθ = 0 for every polynomial P .

Exercise 2. Let K ⊂ C be the unit circle, and let N be an integer. Prove that there is ℓ ∈ C(K)∗

of norm 1 such that ℓ(zN ) = 1 and ℓ(zn) = 0 for every integer n ̸= N . Do this in two ways, once
by invoking Theorem 3 and once by defining the functional via an explicit formula and checking the
relevant properties directly.

Proof of Theorem 5. Let V = C(K), let Z ⊂ C(K) be the space of polynomials in z, and let ℓ be an
element of V ∗ that vanishes on Z. By Theorem 4, it is enough to check that ℓ(f) = 0. By the Riesz
representation theorem (see Theorem 6.19 of [Rud]) there is a complex Borel measure µℓ on K such
that ℓ(g) =

∫
K g dµℓ for every g ∈ C(K).

Since a complex measure is a linear combination of ordinary measures, the problem thus reduces
to showing that for any Borel measure µ on K, we have∫

K
zn dµ(z) = 0, for n = 0, 1, 2, . . . =⇒

∫
K
f(z) dµ(z) = 0.

By the Cauchy integral formula,∫
K
f(z) dµ(z) =

∫
K

∫
Γ

f(w)dw

w − z
dµ(z),

where Γ is any contour enclosing K, contained in the set where f is analytic.1 By switching the order
of integration, we see that it is enough to show that the function

g(w) =

∫
K

dµ(z)

w − z

vanishes on C \K. But if w is sufficiently large, specifically |w| > max{|z| : z ∈ K}, then

g(w) =

∫
K

∞∑
n=0

1

w

( z

w

)n
dµ(z) =

∞∑
n=0

w−n−1

∫
K
zn dµ(z) = 0.

On the other hand, g is analytic (check complex differentiability directly from the definition), and
C\K is connected, so g must vanish identically on C\K (because the zeroes of a nonconstant analytic
function are isolated; see Theorem 10.18 of [Rud]). □

1To construct such a Γ, cover K by a finite collection of open rectangles whose closures are contained in the set where
f is analytic, and let Γ be the boundary of the union of these rectangles. See Theorem 13.5 of [Rud] for a more detailed
and general construction.
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The above proof is adapted from Theorem 13.6 of [Rud], which also shows how to handle the case
where C \K is not connected, by replacing the polynomials with suitable rational functions. Example
2.3.10 in [Hör] contains a similar proof: in place of the contour Γ, it uses a smooth cutoff function and
a Cauchy integral formula for compactly supported functions. Near that example in [Hör] are several
other fun applications of the Hahn–Banach Theorem.

Mergelyan’s theorem improves Runge’s theorem by weakening its hypotheses. Specifically, instead
of requiring that f be analytic near K, it requires only that f be continuous on K and analytic on the
interior of K. It is the final theorem of [Rud], and its final step is an application of Runge’s theorem.
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