Kiril Datchev MA 546 Spring 2025

Homework 5

Due February 19th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

- Exercises 1 and 2 from https://www.math.purdue.edu/~kdatchev/546/hb.pdf.
- Let $I \subset \mathbb{R}$ be an interval, let X be the space of bounded continuous functions from I to \mathbb{F} , and for every $p \in I$ and $h \in \mathbb{R} \setminus \{0\}$ such that $p + h \in I$, define $T_{p,h} \in X^*$ by

$$T_{p,h}f = \frac{f(p+h) - f(p)}{h}.$$

Prove that $||T_{p,h}||_{X^*} = 2/h$, and use the uniform boundedness principle¹ to show that, for any fixed $p \in I$, the set of f which are differentiable at p is meager.

• Problem 19 from Chapter III of Reed and Simon.

¹Recall the statement that if \mathcal{F} is a set of bounded linear maps from a normed vector space X to a normed vector space Y, and if $\sup_{T \in \mathcal{F}} ||T||_{X \to Y} = +\infty$, then the set $\{f \in X : \sup_{T \in \mathcal{F}} ||Tf||_Y < +\infty\}$ is meager.