
Mean ergodic theorem

Ergodic theory studies the long time average behavior of a system. The basic principle is that all
systems must tend on average to equilibrium in some sense, and we wish to understand in what sense.

We begin with a version of this in Hilbert space.

Theorem. Let H be a Hilbert space, and let U : H → H be a linear map such that ∥Uf∥ ≤ ∥f∥ for
all f ∈ H. Let

SNf =
1

N

N−1∑
n=0

Unf,

and let P : H → H be the orthogonal projection onto the kernel of (I − U). Then

lim
N→∞

∥SNf − Pf∥ = 0, for all f ∈ H. (∗)

Here f describes the state of a system, and the map U represents time evolution. Thus, as N → ∞,
SN is the long-time average behavior of the system. The theorem asserts that the long time average
converges to a particular projection.

The most important case is H = L2(X,µ) and Uf = f ◦ T , where T : X → X obeys
∫
f ◦ T dµ =∫

f dµ for every f ∈ L1(X,µ); we say that µ is an invariant measure for T . Then ∥Uf∥ = ∥f∥ for
every f ∈ H.

Proof. The proof proceeds by orthogonal decomposition.

(1) If f ∈ Ran(I − U), i.e. if f = g − Ug for some g ∈ H, then the series telescopes and we have

∥SNf∥ = ∥g − UNg∥/N ≤ 2∥g∥/N → 0.

(2) Furthermore, ∥SNf∥ → 0 for f ∈ Ran(I − U) by continuity. Indeed, given any linear operator
S on a normed vector space V , to show that ∥SNf∥V → 0 for all f ∈ V , it is enough to check
it for f ranging over a dense subset of V and then check also supN ∥SN∥V→V < +∞. (This is
exercise I.27 in Reed and Simon)

(3) If f ∈ Ran(I − U)
⊥
, then in particular ⟨f, (I−U)f⟩ = 0 and so ⟨f, Uf⟩ = ∥f∥2. Consequently,

∥f − Uf∥2 = ∥f∥2 − 2Re⟨f, Uf⟩+ ∥Uf∥2 = ∥Uf∥2 − ∥f∥2 ≤ 0,

and hence Uf = f .

(4) The above proves (∗) with P equal to orthogonal projection onto Ran(I − U)
⊥
, and also that

Ran(I − U)
⊥ ⊂ Ker(I − U). It remains to show that Ker(I − U) ⊂ Ran(I − U)

⊥
. But if

Uf = f , then SNf = f , which implies Pf = f by (∗), which implies f ∈ Ran(I − U)
⊥
because

P is a projection. □

This beautiful proof comes from Sur la théorie ergodique by Frédéric Riesz, 1944. It generalizes J.
V. Neumann’s 1931 Proof of the Quasi-Ergodic Hypothesis.

Exercises.
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(1) Adapt the proof above to show that if f ∈ H, then

lim
N→∞

sup
M∈N0

∥∥SNUMf − Pf
∥∥ = 0.

Hint: Show that if f = g − Ug, then ∥SNUM f̃∥ ≤ 2
N ∥g∥+ ∥f − f̃∥ for all N , M , and f̃ .

(2) Let U : Fn → Fn, where F is R or C, be a linear map whose eigenvectors span Fn and whose
eigenvalues all have magnitude at most one. Prove that limN→∞ |SNv−Pv| = 0 for all v ∈ Fn,
where P is a projection (not necessarily orthogonal) onto the kernel of (I − U).

(3) Prove that if H = L2(Rd, dx) and Uf(x) = f(x− p) for some fixed p, then P = 0 in (∗).

If µ is finite, then constants belong to the range of P . If the range of P consists only of constants,
then we say µ is ergodic and the Mean Ergodic Theorem becomes

SNf → 1

µ(X)

∫
X
f dµ, in the L2 sense.

In words, we say the time averages converge to the space average.

This convergence result has many variants, analogous in some ways to the different convergence
results for Fourier series and their generalizations. The most important is Birkhoff’s Ergodic Theo-
rem (BET), which asserts convergence almost everywhere for f ∈ L1(X,µ). For a more substantial
introduction to the subject, including a proof of BET, see (in ascending order of scope):

• Walkden’s Notes on Ergodic Theory for a thorough presentation of BET, with some simple
and striking applications of it,

• Pollicott and Yuri’s small book Dynamical Systems and Ergodic Theory for more connections
to other mathematical problems, particularly in number theory,

• Katok and Hasselblatt’s big book Introduction to the Modern Theory of Dynamical Systems
for a broad introduction to dynamical systems.

Below we develop some examples and applications of the Mean Ergodic Theorem, following the
references above.

Our main examples are ones in which X is the unit circle in C, µ is arclength measure, and T is
either a rotation or the doubling map T (eiθ) = e2iθ.

Consider first the case where T is rotation by an angle α. Then Uf = f if and only if both α and
2π are periods of f . If α/π ̸∈ Q this occurs if and only if f is constant, so µ is ergodic. If α/π ∈ Q then
there are many other solutions to Uf = f . In this case we can get ergodicity by using a sum of delta
masses for µ instead of arclength measure. (More invariant measures can be constructed by taking
nonnegative linear combinations (or more general superpositions) of these examples.) We say that the
dynamical system decomposes into independent dynamical systems, one for each periodic orbit.

Consider now the case where T is the doubling map. Writing f(eiθ) =
∑

cne
inθ we find that

Uf = f if and only if
∑

ane
inθ =

∑
a2ne

inθ, i.e. if and only if an = an/2 for even n and an = 0 for
odd n, which implies again Uf = f if and only if f is constant. Thus arclength measure is ergodic for
the doubling map. In this case there are also other invariant measures, like δ0 and δ2π/3 + δ4π/3.

Exercise. (4) Let T : X → X be given, and suppose T has a periodic orbit of period n (i.e. there is
x ∈ X such that n = min{m ∈ N : Tmx = x}). Prove there is a unique invariant probability measure

https://personalpages.manchester.ac.uk/staff/charles.walkden/ergodic-theory/ergodic_theory.pdf
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of T supported on this orbit, and it is ergodic. Give some examples in the setting of rotations on the
circle and the doubling map on the circle.

We now prove that irrational rotation is uniquely ergodic.

Theorem. Let X be the unit circle in C, let T (θ) = θ + α with α/π ̸∈ Q, and let µ be a finite Borel
measure on X such that

SNf →
∫
X
f dµ, in the L2 sense.

Then µ is normalized arclength measure, i.e. dµ = dθ/2π.

Proof. If k ̸= 0, then

SNeikθ =
1

N

N−1∑
n=0

eik(θ+nα) =
eikθ

N

1− eikNα

1− eikα
.

The denominator is nonzero because α/π ̸∈ Q, so ∥SNeikθ∥C(K) → 0 as N → ∞. Since SN1 = 1,

∥SN∥C(X)→C(X) = 1 and since the span of {eikθ}k∈Z is dense in C(X), it follows that, for all f in

C(X), ∥SNf − cf∥C(X) → 0 as N → ∞, where cf = 1
2π

∫
fdθ.

Since ∥g∥L2(X,µ) ≤
√
µ(X)∥g∥C(X) for all g ∈ C(X), it follows that ∥SNf − cf∥L2(X,µ) → 0 for all

f ∈ C(X). By uniqueness of limits, 1
2π

∫
fdθ =

∫
fdµ. Since a Borel measure is uniquely determined

by the linear functional it induces on C(X), it follows that dµ = dθ/2π. 1 □

We end with a fun example. Let X be the space of sequences of letters; this represents the result of a
monkey typing randomly. Define a cylinder of length n to be the set of sequences starting with a given
string. Thus, the sequences starting with the letter H are a cylinder of length 1, and the sequences
starting with the text of Hamlet are a cylinder of length 133,834. Given any n, X is the disjoint
union of the 26n cylinders of length n. Define a probability measure µ on X by letting µ(A) = 1/26n

whenever A ⊂ X is cylinder of length n, and extending µ to the σ-algebra generated by the cylinders.

It is easy to see that sequences without the letter ‘H’ have measure zero, i.e. the letter ‘H’ appears
with probability 1. This is because the chances of ‘H’ not appearing in the first N letters is (25/26)N ,
which tends to 0 as N → ∞. One can similarly show that any given string appears with probability
1, and further it appears infinitely often with probability 1. Thus, for any N , the monkey typing
randomly will eventually write Hamlet N times.

Now let us use ergodicity to show that every string shows up on a regular basis. Let T : X → X
be the map which deletes the first letter in the sequence. If we can show that T is ergodic, then we
can let I be any cylinder of length n, and apply the Mean Ergodic Theorem to obtain SN1I → 1/26n

in L2(X,µ). Thus, for instance, the letter A shows up 1/26 of the time on average, and the text of
Hamlet shows up about 1/26133,834 of the time on average.

µ is invariant because µ(T−1A) = µ(A) for any cylinder A. It is ergodic because it is mixing : this
means that µ(T−NA∩B) → µ(A)µ(B) as N → ∞ for all measurable A and B. In words, we say µ is

1In more detail, if two Borel measures µ and ν on a compact metric X space differ on a measurable set, then by inner
regularity they must differ on a compact set K ⊂ X, and since fn(x) = exp(−nd(x,K)) defines a sequence of continuous
functions converging monotonically to the indicator function of K, it follows that there is N such that

∫
fndµ ̸=

∫
fndν

for n ≥ N .
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mixing if the chances of being now in B and N steps from now in A converge to the product of the
chances of being in A and B separately; i.e. in the limit the events ‘being now in B’ and ‘being N
steps from now in A’ decouple and approach being independent events.

To see that mixing implies ergodic, observe that mixing implies µ(A) = µ(A)2 when T−1A = A.
To check that our T is mixing, note that if A is a cylinder of length m and B is a cylinder of length
n, then µ(T−NA) ∩ µ(B) = µ(A)µ(B) when N ≥ n.

In general, mixing is a stronger property than ergodicity. For example, if A and B are intervals
on the unit circle, T is an irrational rotation, and µ is arclength measure, then µ(T−NA ∩B) has no
limit as N → ∞. The point is that ergodicity is a more general property of systems: see Section 4.1.e
of Katok and Hasselblatt for more.


