MA 266 Lecture 10

Section 2.6 Exact Equations and Integrating Factors

In the section, we consider a special class of first order equations known as exact equations. Example 1. Solve the differential equation

$$
2 x+y^{2}+2 x y y^{\prime}=0 .
$$

Let the differential equation be

$$
M(x, y)+N(x, y) y^{\prime}=0 .
$$

Suppose we can identify a function $\psi(x, y)$ such that
then

In this case, the equation is called an \qquad differential equation.

Question: How can we tell whether a given equation is exact?

Theorem Let M, N, M_{y}, and N_{x} be continuous on some rectangular region R. Then the equation

Question: Given an equation is exact, how to find the function ψ ?

Example 2. (Problem \#5) Solve the differential equation

$$
\left(y \cos (x)+2 x e^{y}\right)+\left(\sin (x)+x^{2} e^{y}-1\right) y^{\prime}=0 .
$$

