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Compressive sensing is used to determine the flow characteristics around a cylin-
der (Reynolds number and pressure/flow field) from a sparse number of pressure
measurements on the cylinder. Using a supervised machine learning strategy, library
elements encoding the dimensionally reduced dynamics are computed for various
Reynolds numbers. Convex L1 optimization is then used with a limited number of
pressure measurements on the cylinder to reconstruct, or decode, the full pressure
field and the resulting flow field around the cylinder. Aside from the highly turbulent
regime (large Reynolds number) where only the Reynolds number can be identified,
accurate reconstruction of the pressure field and Reynolds number is achieved. The
proposed data-driven strategy thus achieves encoding of the fluid dynamics using the
L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting
L1 norm. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4836815]

I. INTRODUCTION

Time-varying fluid flows are ubiquitous in modern engineering and in the life sciences. Partic-
ularly challenging is the characterization of unsteady aerodynamic forces and moments as they play
critical roles in, for instance, biological propulsion and bio-inspired engineering design principals.1–4

It is observed that birds, bats, insects, and fish routinely harness unsteady fluid phenomena to im-
prove their propulsive efficiency, maximize thrust and lift, and increase maneuverability.5–10 And
despite their limited number of computational resources and spatially distributed, noisy sensors, they
achieve robust flight dynamics and control despite potentially large perturbations in flight conditions
(e.g., wind gusts, bodily harm). Such observations are highly suggestive, leading to conjectures
about the existence of low-dimensional structures in the flow-field that are sparsely sampled and
which are exploited for robust control purposes. Our goal is to develop a mathematical framework
for directly addressing this conjecture. In particular, we consider the model problem of flow around a
cylinder where (i) dimensionality reduction is used to encode the low-dimensional dynamics present
in the system for a wide range of fluid flows, and (ii) compressive (sparse) sampling is used to ro-
bustly decode the dynamic state of the system, thus revealing a promising, low-dimensional control
architecture. The integration of such encoding (machine learning) and decoding (compressive sens-
ing) strategies represents a novel approach for characterizing complex dynamical systems and/or
fluid flows. Indeed, this approach presents a tremendous opportunity to develop the underlying
mathematical theory of dynamical systems in the context of sparse data assimilation and machine
learning.

Like many fields, fluid dynamics is experiencing a tremendous boon in the development of
experimental and computational tools capable of generating enormous amounts of data, thus fueling
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the ever-growing demand for mathematical methods capable of handling big data. Two extremely
successful mathematical strategies have been developed for handling data: the so-called compressive
sensing (CS) and machine learning (ML) methods. In the former, sparsity in the data and/or represen-
tation of the data plays a defining role. In the latter, especially as it applies to pattern theory, clustering
and dimensionality reduction, statistical learning,11 and/or pattern classification/recognition12 is ac-
complished by computing principal components (dimensionality reduction) of the dynamic data.
Our objective is to integrate CS and ML together to enhance the modeling and predictive capabilities
of complex dynamical systems. These two techniques (CS, ML) naturally partner together and are
demonstrated to accurately characterize the flow around a cylinder. Although we will discuss ML
and CS as separate methods, one can more broadly think of CS as simply another tool from the
larger ML theoretical framework.

Compressed sensing allows the reconstruction of a signal using a small number of measurements,
based on the fact that the signal has a sparse representation in an appropriate basis.13–19 This allows
the use of less measurements than the Nyquist–Shannon criterion requires.20, 21 Although the typical
CS applications are found in areas spanning signal processing to computer vision, our objective
is to use the methodology for the numerical solution of partial differential equations (PDE). We
present a specific example – the incompressible Navier-Stokes flow around a cylinder. However, the
framework presented can be applied to a much broader set of equations. At the method’s core is
fact that most complex systems, including the flow around a cylinder, exhibit an underlying low-
dimensional structure in their dynamics. Unlike the standard application of CS for image processing,
for example, where the sparse (wavelet) basis is already known, the optimal sparse basis considered
here is computed directly from PDE simulations.

Historically, the problem of optimal basis selection is of paramount importance in complex
dynamical systems. Recent works have already suggested some forms of statistical learning and
ML. Indeed, sparsity with a pre-determined (non-optimal) basis can be used for PDE simulations to
great advantage.22–24 Moreover, similar statistical learning, library-based, and/or information theory
methods25, 26 are used for basis selection in fluid dynamics, climate science,27 and oceanography.28

Such observations of dimensionality reduction allow compressive sensing to play a critical role in
model building and assessment in the physical sciences.29–33 Such a broad range of researchers
and scientific topics demonstrates the growing importance of using and integrating the data-driven
techniques of dimensionality reduction, machine/statistical learning, and compressive sensing. The
current work combines all three to produce an effective strategy for characterizing complex systems.

To be more precise about the integration of CS and ML with fluid flows, consider a standard
numerical scheme for solving PDEs by discretization (e.g., flow around a cylinder). That is, turn
a PDE into a system of ordinary differential equations (ODE), then solve the latter equation with
standard time-stepping tools, such as Runge-Kutta. For complex dynamical systems, the immediate
difficulty is dimensionality – the dimension of the ODE depends on the number of points in
the grid, which can be prohibitively large. This is due to the fact that an accurate PDE solution
generally requires a large number of grid points, making the numerical solution computationally
expensive. However, a well-known observation is that in many systems, the dynamics computed in
the high-dimensional ODE, are observed to be low-dimensional. To this end, the proper orthogonal
decomposition (POD) was developed where the dynamics is projected from the high dimensional
discretized system to a low-dimensional system that can be solved with a significant computational
improvement and often is amenable to analytic analysis. The specific projection (POD) is chosen
based on the statistics obtained from solving the full system. Namely, a full simulation is first
computed. Then a projection is computed that will preserve most of the data in the L2-norm, i.e.,
the reduction and spatiotemporal encoding is accomplished using a singular value decomposition.
Section III B elaborates on this method. For general information regarding the POD method and its
application to the Navier-Stokes equation, see Berkooz, Holmes, and Lumley.34

Integration of the CS and ML schemes exploits the underlying low-dimensional (POD modes)
dynamics observed in simulation and/or experiment. As stated, CS takes advantage of sparsity by
considering a basis wherein the dynamics is sparse. Here, the sparse basis elements are the POD
modes computed from full PDE simulations of the system. By characterizing various dynamical
parameter regimes of the system, a library of sparse POD modes can be constructed, i.e., a supervised
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ML algorithm is effectively enacted and the dynamics are encoded. Sparse measurements can then be
used with the CS algorithm to identify, or decode, the correct POD modes for the given measurements,
allowing for reconstruction of the dynamics. In our example of flow around a cylinder, the sparse
POD basis elements are constructed from different Reynolds numbers where the dynamical behavior
changes significantly. A limited number of pressure field measurements is all that is necessary to
reconstruct the pressure field, and determine the current Reynolds number. To our knowledge, this
proof of concept in integrating CS and ML with continuous complex systems is demonstrated here
for the first time.

The structure of this paper is as follows: Sec. II offers an overview of the method advocated and
highlights the key features of the data-driven modeling strategies, including how the dimensionality
reduction techniques are used with sparse sensing. Section III describes the governing PDE system
considered (the flow around a cylinder) and the numerical method used to study it, including its
POD decomposition. Section IV specifies the implementation of the compressed sensing technique
to the low-dimensional numerical solutions (ML library) of the Navier-Stokes equation. Section V
contains the results of the CS and ML schemes for characterizing flow around the cylinder. Finally,
Sec. VI contains a discussion of the method’s future outlook.

II. OVERVIEW OF METHOD

Figure 1 helps illustrate the overall integration of the dimensionality reduction methods (machine
learning) with sparse sensing in a complex system such as the flow around a cylinder. In particular,

FIG. 1. Outline of algorithmic procedure used for dimensionally reducing, classifying, and reconstruction the flow around
a cylinder. The procedure relies first on building a library of modes acquired, in an offline manner, by low-rank projections
(SVD). The machine learning portion of the algorithm thus relies on (a) data sampling of the full, highly resolved complex
system which is then (b) dimensionally reduced through SVD/POD/PCA and (c) stored in a library matrix �. Once constructed,
(d) sparse sensing at a limited number (N) of locations can be used to (e) classify the dynamical regime by solving a L1

convex optimization problem. The L1 promotes sparsity and allows the classification to identify the current relevant dynamic
modes. Further, (e) the pressure field around the cylinder and in the flow domain can then be reconstructed.
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the key steps involved in the machine learning portion, which is performed in an offline fashion,
is separated from the compressive sensing implementation which is performed online given the
ML results. Typically, the machine learning portion is extremely expensive from a computational
viewpoint since it involves a refined and well-resolved characterization of the complex system across
a broad range of parameter space. Thus, it is thought to be an offline computation. Once the highly
resolved complex system has been dimensionally reduced, the compressive sensing scheme can
take advantage of this as the representation of the dynamics are now easily represented in a sparse
(low-dimensional) basis. This part of the computation can be done in an online, real-time manner.
The following steps are critical for each portion of the method.

A. Machine learning (dimensionality reduction)

1. Data sampling and acquisition

The first step is to compute (or experimentally acquire) solutions of the complex system of
interest as a function of a control/bifurcation parameter. For the flow around a cylinder, the goal is to
compute the fluid pressure field as a function of time for various Reynolds numbers. Pressure data
can be collected both on the cylinder itself ∂D and in the surrounding domain D. The respective data
matrices A∂D and AD are such that each column of the matrix is a snapshot of the pressure field at
time t, t + �t, t + 2�t, · · · , t + M�t. Thus, there are M + 1 total snapshots (columns) in the data
matrices. Note that 2D or higher-dimensional data are first reshaped into a column vector before
adding it to the data matrix. The total number of snapshots and time between snapshots are chosen
judiciously so as to properly characterize the fluid flow.34 In the fluid flow example, the data can be
taken simply on the boundary of the cylinder ∂D, or for future reconstructions of the flow field, in
the domain surrounding the fluid D. Further discussion on this will be given at the end of Sec. V
where reconstruction of the pressure field in D is achieved given sparse measurements on ∂D.

2. Dimensionality reduction and optimal (sparse) bases

The acquisition of data at various Reynolds numbers allows for the construction of the optimal
(in a L2 sense) bases modes associated with each Reynolds number. In particular, a POD reduction
is accomplished with the singular value decomposition algorithm.34 For each Reynolds number
considered, the dominant pressure field modes on the cylinder and/or the surrounding fluid can be
acquired. Typically, only those modes capturing a prescribed percentage of the energy (e.g., 99%)
are kept. This gives a low-rank approximation of the underlying low-dimensional manifold on which
the dynamics evolves.

3. Library

The collection of dominant POD modes are used to construct a library matrix �. The goal is
for the library to contain all possible or relevant low-rank approximation bases. Thus, this collection
of optimal basis modes represents the most sparse representation of the dynamics for the various
dynamical behaviors observed. It should be noted that the grouping of modes in � that are generated
at different Reynolds numbers are not orthogonal to each other. One could imagine reducing the
library further by finding the correlation structures among the various dynamical modes using, for
instance, the singular value decomposition (SVD), but our objective will be to use sparse sensing
to classify and select the best modes associated with given sparse data measurements. This library
building exercise is a very simplistic implementation of a ML scheme. But given its success, it
suggests that more advanced ML techniques could potentially be applied with even greater success.

B. Compressive (sparse) sensing

1. Sparse measurement

A limited (sparse) number of pressure sensors are placed around the cylinder in order to classify
and reconstruct the pressure field on the cylinder and in the flow field around it. The matrix �
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prescribes the N measurement locations around the cylinder (as a projection). Each measurement xj

is arranged into a measurement vector x. More precisely, given the full state vector y of pressure
measurements around the cylinder, then x = �y specifies the relationship between the sparse
measurements and the full state.

2. Classification

The primary role of the offline library building is now considered. Specifically, the first goal
of the sparse measurement is to provide a basis for classifying the dynamical regime. Compressive
sensing provides an ideal method for classification (or machine learning) given that the library
building provided the sparse modes necessary for the compressive sensing framework. To be more
precise, the CS scheme now considers solving the highly underdetermined system x = ��a subject
to finding the min ‖a‖1. This results in a convex optimization problem where the role of the L1

optimization is to promote sparsity in the vector a which determines the coefficient of each library
mode element. In particular, almost all the vector components of a will be identically zero. The
remaining non-zero modes are those associated with the dynamical regime currently measured by
the sparse sensors.

3. State estimation and reconstruction

Once the sensors have classified the current dynamical regime of the system, the pressure
field both around the cylinder ∂D and in the fluid domain D can be reconstructed from the library
data. Note that once the appropriate modes are classified, a L2 projection (pseudo-inverse) is used
to project the measurements onto these selected modes and the pressure field on the cylinder and
around the cylinder can be constructed. Thus, the sparse sensing is used for classification only. There
are several options how to do this procedure, we discuss one of them at the end of Sec. V. One could
also then use this reconstruction as the initial state of a Galerkin POD projection aimed at predicting
the future state of the system.34 Thus, there are three potential tasks that can be achieved with such
an integration of ML and CS: classification, reconstruction, and a low-rank projection of the future
state.

The above outlines a general procedure that can be broadly used in complex systems. What
follows is a specific demonstration of this technique to the flow around a cylinder. Its success
emphasizes the role that data-driven methods such as ML and CS can have in quantifying dynamical
systems. Many of the more advanced classification, clustering, dimensionality reduction, and sparse
sensing schemes are currently under consideration.

III. GOVERNING EQUATION AND NUMERICAL METHODS

To demonstrate the integration of ML and CS on complex dynamical systems, we study the
flow of an incompressible fluid around a cylinder in a channel. This system is described by the
Navier-Stokes equation

∂u
∂t

+ u · ∇u + ∇p − ν∇2u = 0, (1a)

∇ · u = 0, (1b)

where u (x, t) ∈ R2 represents the two-dimensional (2D) velocity of the fluid, and p(x, t) ∈ R is the
corresponding pressure. The boundary conditions are as follows:

1. Constant flow of u = (1, 0)T at x = −15, i.e., the entry of the channel.
2. Constant pressure of p = 0 at x = 25, i.e., the end of the channel.
3. Neumann boundary conditions, ∂u

∂n = 0 on the boundary of the channel.
4. No-slip conditions, u = 0 on the boundary of the cylinder.
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This system is chosen because it is a well-known and classic problem of applied mathematics.
Furthermore, it has been demonstrated to exhibit low-dimensional behavior as the parameter ν, the
Reynolds number, is varied.

The characteristic dynamics of the fluid flow as a function of the Reynolds number is beautifully
visualized, for instance, in Van Dykes An Album of Fluid Motion.35 At the lowest Reynolds numbers,
the fluid is described by a simple laminar flow. Increasing the Reynolds number produces the first
non-trivial dynamics which is characterized by the creation of two circulating regions along with a
stagnation point behind the cylinder. Further increasing the Reynolds number induces the onset of
periodic, von Karman vortex shedding. Finally, further increasing the flow rate beyond a critical level
produces fully developed turbulence in the wake of the cylinder. As might be expected, the first three
dynamical regimes produce low-dimensional representations of the fluid motion. But remarkably,
even in the fully turbulent regime, snapshot based methods for O(1) samples of time show the fluid
flow to be relatively low-dimensional.34

A. Numerical methods

The numerical solution of the incompressible Navier-Stokes equation is computed using the
Nektar++ package based on Ref. 36, which produces accurate results and uses a high-order spec-
tral element method with element order 12. The mesh used is a non-uniform mesh consisting of
412 elements, and the high-order simulation produces high-resolution data at the 66 000 Gaussian
quadrature points. Figure 2 shows the grid used for computation of the fluid flow. Note the mesh
refinement around and to the right of the cylinder where the most interesting fluid flow occurs. In
contrast, no refinement is required far to the left, top, and bottom of the computational domain. The
mesh used is sufficient for demonstrating the key concepts of ML and CS integration. In particu-
lar, the Reynolds number range considered is confined to between 40 and 3000. Higher values of
Reynolds numbers may require further refinement of the mesh.

Simulations were generated for the Reynolds numbers ν = 40, 150, 300, 1000, and 3000 with
arbitrary initial conditions. The dynamics were simulated until a persistent behavior, stationary or
periodic, was observed for the non-turbulent dynamics. Upon achieving a steady- or periodic-state,
the dynamics was sampled through a series of snapshots whose time between intervals was much
faster than the periodicity observed in the dynamics. Figures 3 and 4 show a typical snapshot of the
streamlines and the pressure profiles taken once the system was in the equilibrium or time-periodic
state. Note that the method is not geared to capture transient dynamics associated with rapid changes
in the Reynolds number.

To attempt a pressure field reconstruction, we consider only data from the perimeter of the
cylinder. In particular, one can place pressure sensors on the cylinder to reconstruct the flow and
pressure fields. However, placing sensors in the fluid’s flow itself may be valid for lab experiments
and computer simulations alone as no realistic system of interest, such as an airfoil or insect wing,
places sensors directly in the flow field behind the structure.

Figure 5 shows the time dynamics of the pressure field around the cylinder for several Reynolds
numbers. As can be seen, increasing the Reynolds number drives the dynamics from a steady-state

−10 0 10 20

−5

0

5

FIG. 2. The grid used for simulating the Navier-Stokes equation is a non-structured grid containing 412 elements. Mesh
refinement is applied around the cylinder and in its wake, where complex fluid flow is observed. Using a high order solver
around 66 000 samples are computed in each snapshot.
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FIG. 3. Stream lines near the cylinder for a typical snapshot taken for Reynolds numbers 40, 150, 300, and 1000 (clockwise).

configuration to a time-periodic evolution to a chaotic (turbulent) evolution. The waterfall plots of the
pressure dynamics on the cylinder are essentially the snapshots used for projecting the dynamics onto
a low-dimensional manifold, where the dynamics occurs as described by the POD methodology.34

B. Proper orthogonal decomposition

The POD method is used to approximate the dynamics of a PDE with a low-dimensional ODE.
Moreover, it attempts to construct (and is guaranteed to do so) the best dimensionality reduction (low-
rank approximation) possible in a L2 sense. The reduction is accomplished by employing the actual
computational (or potentially experimentally measured) solution and taking the linear projection that
maximizes the amount of energy preserved, i.e., the original data’s L2-norm. Essentially, the singular
value decomposition can be applied to snapshots of the simulation data. This method can be seen
as a Galerkin method, where instead of using the arbitrary Fourier mode basis, the basis is chosen
with respect to the specific problem based on the statistical properties of the solution. The POD
reduction, perhaps in a slightly modified form, is known throughout the literature alternatively as
principal component analysis (PCA), empirical orthogonal functions (EOF), the Hotelling transform,
or a Karhunen-Loéve expansion. Here, we will simply refer to it as POD.

The application of the POD method to the study of channel flow around a cylinder was first
presented by Deane, Kevrekidis, Karniadakis, and Orszag.37 In that study, the solution of the

FIG. 4. Pressure field snapshot for Reynolds numbers 40, 150, 300, and 1000.
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FIG. 5. Pressure field around the cylinder for increasing Reynolds number 40, 150, 300, and 1000. As the Reynolds number
increases and dynamical evolution becomes more complicated, it requires a larger number of POD modes to represent the
dynamics. Regardless, the pressure field remains low dimensional for all cases, requiring 1, 4, 6, and 8 modes to capture
99.9% of the energy, respectively.

low-dimensional system is shown to approximate quite well the original system in the non-turbulent
regime. The POD method was also applied to the study of three-dimensional cylinder flow by Ma
and Karniadakis38 and with control systems by Bergmann, Cordier, and Brancher.39 In this work,
we do not use POD modes to compute the system’s dynamics, but rather as the basis that represents
our data in a sparse manner, i.e., the POD modes are the library elements that encode the low-rank
dynamics of the system for a range of Reynolds numbers.

To compute the POD modes for the Reynolds numbers we are interested in, namely, ν = 40,
150, 300, 800, 1000, and 3000, we simulate the dynamics, with a fixed Reynolds number, until we
reach a steady or periodic state. Data sampling is then achieved by taking snapshots of the simulation
results. Recall that only the pressure field on the cylinder is measured. We perform a singular value
decomposition on the data to obtain a low-dimensional representation, keeping only those POD
modes that capture a prescribed percentage of the energy. As noted, the flow characteristics are
low rank. Thus, the dynamics can be thought of as sparse in the POD basis. Indeed, validation
of our notion of data sparseness is demonstrated by the decay of singular values in Fig. 6. This
figure demonstrates the primary thrust of the article: (i) the dynamics throughout a large range of
Reynolds numbers always can be represented by a small number of appropriately chosen modes,
(ii) the dynamics is sparse in the POD basis representation, and (iii) a library constructed from the
POD modes at different Reynolds numbers captures the full range of dynamics possible for the flow
around a cylinder (aside from the fully turbulent regime).

For the POD mode selection, the dimension of the projected, low-rank system must be specified.
This is chosen according to the data by selecting a threshold of 99.9% of the energy we want to
conserve with the projection. The cutoff threshold is rather arbitrary and a more rigorous analysis
characterizing the role of the threshold on POD performance and convergence is still lacking.
Regardless, with a given threshold our objective is to select the minimal number of POD modes
needed for each Reynolds number. Once all of the POD modes are computed in the preprocessing
stage, i.e., for the various Reynolds numbers, we place them as the column vectors in the matrix
�. Figure 7 shows the three most dominant modes for various Reynolds numbers. The matrix � is
our library. The library encapsulates all known behaviors of the system, or, at least, those explored
via computational simulations. Success of the library-based method is based upon appropriately
sampling all relevant dynamics and parameter ranges under which the system will be considered.
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FIG. 6. The top plot presents the decay of singular values of the data matrix, for various Reynolds number. The graph
presents the singular values normalized by the largest singular value. The bottom graph presents, in logarithmic scale, how
much energy is preserved by projecting the dynamics to a n-dimensional space, for n = 1, 2, . . . , 20. As the Reynolds number
increases, a higher dimensional space is needed to preserve the same amount of energy.

To summarize the preprocessing stage and outline the underlying algorithm developed, we
performed the following steps for the Reynolds numbers ν = 40, 150, 300, 800, 1000, and 3000:

1. Simulate the dynamics with Nektar++ until a steady- or periodic-state is reached.
2. Once initial transients die out and the solution of interest is reached, sample the pressure on

the cylinder’s perimeter through a series of snapshots. This corresponds to our sensors.
3. Generate the data matrix Aν

∂ D containing the time snapshots as its columns. Note that the
superscript ν denotes the data matrix for a given Reynolds number. Note that data matrix
Aν

D for the pressure field surrounding the cylinder is also collected for future reconstruction
purposes. A dimensionality reduction and library building procedure for Aν

D is not performed.
4. Perform a singular value decomposition on the data matrix, Aν

∂ D = UνSν (Vν)∗, where Vν and
Uν are unitary, Sν is diagonal containing non-negative entries, and (Vν)∗ denotes the matrix
conjugate to Vν .

5. Identify the dν most energetic POD modes so their total energy will comprise 99.9% of the
data matrix, and dimensionally reduce the system appropriately to this dimension. A matrix
V̄ν is created containing the relevant POD modes as its columns.
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FIG. 7. The three top eigenfunctions, namely, the three most dominant modes, are presented for various Reynolds numbers.
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Once this process is completed at all the desired Reynolds numbers, we concatenate the V̄ν matrices
to generate our library matrix �, namely,

� = [
V̄40, V̄150, V̄300, V̄800, V̄1000, V̄3000

]
. (2)

Of note, truncation to a lower-dimensional system described in step 5 is accomplished by picking
the most energetic mode to constitute, for example, 99.9% of the energy. Particularly, if we denote
the diagonal of S by s1 ≥ s2 ≥ · · · ≥ sn, then we pick the smallest d satisfying

r = s2
1 + s2

2 + · · · + s2
d

s2
1 + s2

2 + · · · + s2
n

≥ 99.9%. (3)

This affords a simple method for determining the rank of the projection space to be considered, thus
determining the number of POD modes to keep in V̄ν . With the library’s completion, the addition of a
compressive sensing scheme for accessing the library is now required. Note that the implementation
of the preceding algorithm is equivalent to a supervised ML algorithm, where low-dimensional
structures in the computational data are discovered and saved for future statistical testing purposes.

IV. COMPRESSED SENSING WITH MACHINE LEARNED LIBRARY ELEMENTS

The compressive scheme applied here deals with solving an underdetermined linear systems of
equations. Overdetermined systems are typically solved by minimizing the error between the fitted
and the actual data, mostly using the pseudo-inverse operator, that minimizes the L2-norm of this
error. In contrast, the entire objective of compressed sensing is to obtain a sparse (sparsest) solution
to the underdetermined system, from the set of all possible solutions. In theory, the minimization
of the L0-norm of the system’s solution is ideal for promoting sparseness. However, minimizing
the L0-norm is NP-hard and thus, computationally intractable. As an alternative, it has been shown
that using the L1 norm instead of L0 results in both (i) a computationally tractable problem via
convex optimization and (ii) sparse solutions. Indeed, the L1 norm can simply be thought of as a
proxy for sparsity. Baraniuk19 illustrate these ideas beautifully in a set of lecture notes in IEEE
Signal Processing Magazine (Lecture Notes), and the reader is encouraged to review this paper if
unfamiliar with sparse approximation and compressive sensing.

This problem is stated more formally as follows: Minimize the zero-norm of a

‖a‖0 = card ({i |ai �= 0}) (4)

restricted to the linear constraint

x = ��a, (5)

where � specifies the sparse measurements to be taken.19 As already stated, solving this problem as
it appears is computationally intractable because it is NP-hard. Fortunately, Candes, Romberg, and
Tao14 show that under general conditions, the resulting parameters can be obtained by minimizing
the L1 norm of a rather than the L0 norm. This turns the problem into the computationally tractable
convex optimization problem

min ‖a‖1 s.t. x = ��a. (6)

The main assumption when applying compressed sensing is that the given vector x = ��a
was generated from a sparse vector a. Thus, we need to find a basis that represents our data in a
sparse manner. The basis described in this paper is obtained by the POD method, as it is optimal
in approximating the data in the L2 sense using a small number of modes. Namely, our assumption
is that given a snapshot of the dynamics obtained from an unknown Reynolds number, and all
of the dominant POD modes, precomputed for several different Reynolds numbers, the sparsest
representation of the data is obtained using vectors corresponding to an actual unknown parameter.
To this end, our previously built library of vectors (POD modes) in our matrix � is the sparse basis
required for the previously described CS scheme.

To solve the L1 minimization problem, a convex optimization routine is required. Here, we
implement the solution of (6) using CVX, a package that can be implemented with MATLAB for
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specifying and solving convex programs40 (CVX: Matlab software for disciplined convex program-
ming, version 2.0 beta, September 2012). Once the POD library of modes (�) is constructed, new
pressure measurements can be used, and the minimization problem (6) can be solved using a simple
laptop running MATLAB.

V. RESULTS

As a first proof-of-concept demonstration of the integration of CS and ML to characterize fluid
flow, the methods are used to compute the Reynolds number of the flow field from a sparse number
of measurements as the flow field changes in time. This Reynolds number reconstruction was applied
to a numerically generated flow, where the Reynolds number varies slowly after reaching a steady
state. Specifically, we generated a flow that starts with Reynolds number 40 and jumps successively
to 150, 300, and 1000. The change in Reynolds number occurs after a steady-state/periodic-state
is achieved. The CS scheme is used to reconstruct the Reynolds number at every snapshot in time
where data are procured.

Recall that data reconstruction from a single snapshot is performed by reducing the dimension
of our data through sparse measurements specified by the matrix �,19 i.e., pressure measurements
on the perimeter of the cylinder. We present two different methods for this dimension reduction:

1. Applying a random projection by a rectangular Gaussian matrix � of dimension N.13–16

2. Picking a small subset of the sensors and setting � accordingly. This is done with two different
strategies:

(a) Randomly choosing a small subset of N sensors at random.
(b) Selecting N sensors according to the maxima and minima position of the POD modes with

the highest energies in our library. The latter method was first suggested by Cohen, Siegel,
and McLaughlin41 for a different goal, namely, the reconstruction of the flow based on a
small number of samples. This was further developed by Yildirim, Chryssostomidis, and
Karniadakis42 for ocean modeling.

For each method, we present our results for N = 10 and N = 20, the dimension to which we reduce
the problem. The ratio of energy we choose to obtain our POD modes is set to 99.9% as it provides
good results.

The classification of the Reynolds number is done by solving the optimization problem in (6)
and obtaining the coefficient vector a. Each entry in a corresponds to the energy of a single POD
mode from our library. Because the optimization in L1 promotes sparsity, only those coefficients
from POD modes associated with the measured flow remain nonzero. The classification of the
Reynolds number is done by summing the absolute value of the coefficient that corresponds to each
Reynolds number. To account for the large number of coefficients allocated for the higher Reynolds
number (which may be 16 POD modes, rather than a single coefficient for Reynolds number 40),
we divide by the square root of the number of POD modes allocated in a for each Reynolds number.
The classified method is the one that has the largest magnitude after this process. The result of this
classification process is summarized in Table I. Seeing that selecting the data-driven sensor locations
(in (b)) obtains the best results, we decided to further investigate the performance as a function of
the number of sensors. This can be seen in Figure 8. Although the accuracy in classification is quite

TABLE I. Success rate of classification using N sensors with library modes selected to have r = 99.9% or 99.99% as given
in (3). For a small number of sensors (N = 10) and r = 99.9%, all classification schemes fall below 80%. However, as the
number of sensors and energy cutoff increase, the POD based sensor selection provides the best classification possibilities.

Random projection (% ) N-random sensors (% ) N-sensors by POD (% )

N = 10, r = 99.9% 79.5 78.9 75.4
N = 10, r = 99.99% 65.0 48.7 76.9
N = 20, r = 99.9% 78.1 76.1 92.9
N = 20, r = 99.99% 82.3 85.2 88.3

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.210.126.199 On: Sun, 11 Sep

2016 02:04:45



127102-12 Bright, Lin, and Kutz Phys. Fluids 25, 127102 (2013)

0 2 4 6
40

150

300

800

1000
10 Sensors: 75.4%

0 2 4 6
40

150

300

800

1000
15 Sensors: 94.6%

0 2 4 6
40

150

300

800

1000
20 Sensors: 92.9%

time

R
e

0 2 4 6
40

150

300

800

1000
25 Sensors: 88.2%

FIG. 8. Reynolds number classification for a time-varying flow, using a different number of input sensors. In each panel,
you can see the success rate given the number of sensors, and also the actual Reynolds number used in the full simulation
(solid line) along with its compressive sensing identification (crosses).

high, many of the false classifications are due to categorizing a Reynolds number flow of 1000 as a
Reynolds number flow of 800. This is largely due to the fact that these two Reynolds numbers are
strikingly similar so that the algorithm proposed has a difficult time separating their modal structures.

Finally, to visualize the entire sparse sensing and reconstruction process more carefully,
Fig. 9 shows both the Reynolds number reconstruction for the time-changing flow field along
with the pressure field and flow field reconstructions at select locations in time. Note that the CS
scheme along with the supervised ML library provide an effective method for characterizing the
flow strictly through sparse measurements. For higher Reynolds numbers, it becomes much more

FIG. 9. Sparse-sensing Reynolds number identification and pressure-field reconstruction for a time-varying flow. The
top panel shows the actual Reynolds number used in the full simulation (solid line) along with its compressive sensing
identification (crosses). Panels (a)–(d) show the reconstruction of the pressure field at four different locations in time (top
panel) demonstrating an accurate (qualitatively) reconstruction of the pressure field. (The left side the simulated pressure
field is presented, while the right side contains the reconstruction.) Note that for higher Reynolds numbers, the classification
becomes more difficult.
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difficult to accurately classify the flow field with such a small number of sensors. However, this does
not necessarily jeopardize the ability to reconstruct the pressure field as many of the library elements
at higher Reynolds numbers are fairly similar.

It should be noted that reconstruction of the pressure field on the cylinder can easily be achieved
once the classification step is done. In particular, one simply projects the data measurements onto
the dominant modes of ∂D for the given Reynolds number found from classification. Thus, this
is a fairly simple exercise in reconstruction by using an L2 measure and a pseudo-inverse pro-
jection. Reconstruction of the pressure field in the domain D surrounding the cylinder can also
be done this way. However, the alternative method we outline here has a tremendous advantage:
it does not require performing a SVD of the full pressure field data matrix Aν

D in the domain D
(see Fig. 1). It is highly desirable and advantageous to avoid performing the SVD of such large
data sets. Consider instead the decomposition of the collected data on the boundary and domain:
Aν

∂ D = UνSν (Vν)∗ and Aν
D = UνSν

(
Ṽν

)∗
, respectively. Note that these decompositions share com-

mon Uν (time evolution) and Sν (singular values) matrices. Indeed, the difference between these two
decompositions simply is related to their modal structures which lie on the cylinder, (Vν)∗, or in the
surrounding fluid,

(
Ṽν

)∗
. Given this fact, the modes in the surrounding fluid can be found from

(
Ṽν

)∗ = (Sν)−1 (Uν)∗ AD. (7)

Thus, the reconstruction of the pressure field modes around the cylinder reduces to a matrix mul-
tiplication on the data collected AD. Reconstruction can then be achieved by projecting the sparse
measurements onto these modes. This avoids the costly computational operation associated with the
SVD procedure on the data AD.

VI. CONCLUSIONS AND DISCUSSION

Modern data analysis techniques are providing transformative algorithms and methods for ex-
ploring complex systems such as fluid flows. In the context of exploring high-dimensional dynamical
systems, a variety of techniques have successfully been applied towards developing low-dimensional
models capable of greatly improving the analysis, control, and predictability of a given model. The
two promising data analysis techniques of ML and CS have hitherto been unexplored in the context
of dynamical systems theory. When used in conjunction, ML and CS provide an ideal framework
for using sparse sensors in a complex dynamical system for reconstruction of the dynamics and
evolution of the system on an optimal low-dimensional manifold. In the fluid flow application advo-
cated here, the underpinnings of bio-inspired flight control and stabilization are suggested. This is of
particular importance in understanding the robust flight stabilization mechanism used for improving
propulsion efficiency, maximizing thrust and lift, and increasing maneuverability in, for example,
insects, fish, and bird.

The combination of dimensionality reduction, CS and ML advocated here can be applied
in an exceptionally broad context. Indeed, such algorithmic strategies can be used to enhance
computation and efficiently identify measurement locations in a given system by remembering the
system’s key characteristics. The low-rank nature of the approximations used allows construction
of control algorithms that wrap around the dimensionality reduction, CS, and ML infrastructure—
another appealing aspect of the methodology. For example, in flight control, the identification of the
dominant dynamical modes through a sparse set of measurements would only be the first step in
applying a control algorithm for stabilizing a constant lift. As such, the proposed method would serve
as the internal portion of the control algorithm. This will be explored further in future work. Further
considerations will also be given to sampling in both time and space with the goal of reducing the
number of sensors required for flow-field identification and reconstruction even further.
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