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ABSTRACT
Basedon the Lubich’s high-order operators, a second-order temporal finite-
difference method is considered for the fractional sub-diffusion equation.
It has been proved that the finite-difference scheme is unconditionally sta-
ble and convergent in L2 norm by the energy method in both one- and
two-dimensional cases. The rate of convergence is order of two in temporal
direction under the initial value satisfying some suitable conditions. Some
numerical examples are given to confirm the theoretical results.
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1. Introduction

During the past several decades, the study of fractional differential equations has attracted many
scholars’ attention. The most important reason is that the fractional differential equations with
fractional operators, which enjoy non-local connectivity, can be more accurate than the classical dif-
ferential equations in the description of physical and chemical processes with non-local connectivity.
For more relevant references and books, readers can refer to [2,14,22,24–26]. Like integer order dif-
ferential equations, the exact solutions of the fractional differential equations are not available under
most circumstances. Even if their solutions can be found, they are usually in the forms of series, which
are difficult to evaluate. So the numerical investigation of the fractional differential equations has been
a popular topic in recent years.

In this work, we are concerned with a high-order finite-difference method for the fractional sub-
diffusion equation as follows:

∂tu(x, t) = (K1 0Dαt + K2 0D
β
t )∂

2
x u(x, t)+ p(x, t), 0 < x < L, 0 < t ≤ T, (1)

u(0, t) = ϕ0(t), u(L, t) = ϕ1(t), 0 < t ≤ T, (2)

u(x, 0) = ψ(x), 0 ≤ x ≤ L, (3)

where 0 < α,β < 1, and K1,K2 are positive constants. Without loss of generality, we assume the
initial condition ψ(x) = 0. If ψ(x) �= 0, one may consider the equation for v(x, t) = u(x, t)− ψ(x)
instead. Therefore, the solution can be continuously extended to be zero for t < 0.
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2 Z.-P. HAO ET AL.

There are several definitions of fractional derivatives, among which the two most commonly used
ones are the Caputo and Riemann–Louville derivatives. Under some regularity assumptions, they can
be converted to each other. According to this, fractional diffusion equations with Riemann–Louville
derivatives are equivalent to ones in the Caputo form. For more details, see [9,17].

For the time-fractional diffusion equations, there have been a lot of numerical work. Langlands and
Henry [15] considered and analysed the L1 scheme for the approximation of the fractional order time
derivative. Sun andWu [28] constructed a difference schemewith L1 approximation for the fractional
diffusion equations and proved that the convergence rate is order of 2 − α in time, where α is the
order of the time fractional derivative. Yuste [32] and Yuste and Acedo [33] proposed the explicit and
weighted averaged difference schemes based on the Grünwald–Letnikov approximation and analysed
the obtained schemes using the Von Neumann method. Zhuang et al. [36,37] introduced a new way
to solve linear and nonlinear sub-diffusion equations. They first integrated the original differential
equation on the both sides, then approximated the obtained identity with the idea of numerical inte-
grals. Adopting the Grünwald–Letnikov formula to approximate time fractional derivative, Cui [6,7]
proposed a compact difference scheme combining the compact technique in space direction. Employ-
ing the L1 approximation to discretize time derivative, Gao and Sun [9] also obtained a compact
difference scheme for the one-dimensional fractional sub-diffusion equation. Zhang et al. proposed
a Crank–Nicolson-type difference scheme for solving the sub-diffusion equation in [35], in which
the H1 norm convergence of the resultant scheme was proved and the maximum norm error esti-
mate was obtained. For Equation (1) with nonlinear source term, Mohebbi et al. [23] obtained a fully
discrete implicit scheme by Grünwald–Letnikov discretization of Riemann–Liouville derivative, and
analysed the solvability, stability and convergence of the proposed scheme using the Fourier method.
In addition, some scholars studied other numerical algorithms, such as spectral method [17,18].

An obvious fact is that, due to the non-local structure of time fractional derivatives, the compu-
tation of the solution at an instant requires information about the solution at all previous time levels,
which implies a high storage requirement. One way to overcome this difficulty is to develop a high-
order method. Now considerable attention has been paid to the high-order schemes. Based on the
so-called block-by-block approach, Cao and Xu [3] presented a high-order scheme for the numerical
solution of the fractional ordinary differential equations, and proved its convergence with the order
of 3 + α. Gao et al. [11] developed a new fractional numerical differentiation formula (called the L1-
2 formula) to approximate the Caputo fractional derivative by means of the quadratic interpolation
approximation. They showed that the convergence rate is 3 − α. Moreover, they presented several
numerical examples to demonstrate that the new L1-2 formula is much more effective and accurate
than the L1 formula when solving time fractional differential equations numerically. However, they
did not provide a rigorous theoretical analysis of the stability and convergence. Following the idea
of L1-2 approximation, Alikhanov [1] developed the L2-1σ scheme and presented a detailed analysis
for the stability and convergence. However, the new approximation can not be applied to multi-term
time fractional order equations, since the σ is dependent on α, the order of time fractional derivative.
Recently, based on the idea of weighted and shifted Grünwald difference operators, Wang and Vong
[31] established schemes for sub-diffusion equations and proved them by the energy method with
temporal accuracy of order two and spatial accuracy of order four, respectively. Using the same idea,
they also obtained a second-order scheme for diffusion-wave equations by transforming the Caputo
fractional diffusion-wave equation into a Riemann–Liouville fractional integro-partial differential
equation [19,27, 29].

From all papers mentioned above, we conclude that there are mainly two approaches to approx-
imate the fractional derivatives. One is by the Grünwald definition, and the other is numerical
quadrature or interpolation approximation. To our knowledge, Lubich [20,21] is first to propose the
idea of fractional multi-step method to discretize the fractional calculus. And a lot of lately numer-
ical work was motivated by his idea. Chen and Deng [5] obtained a class of fourth-order schemes
by weighting and shifting Lubich’s high-order operators to deal with space fractional differential
equations. Zeng et al. developed two finite difference/element approaches for the time-fractional
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sub-diffusion equation with Dirichlet boundary conditions in [34], in which the time direction is
approximated by the fractional linear multi-step method and the space direction is approximated
by the finite element method. Very recently, Li and Ding [16] also applied the Lubich’s high-order
methods, second-order approximation, to solve the following reaction and anomalous-diffusion
equation

∂tu(x, t) = 0D1−α
t [Kα∂2x u(x, t)− Cαu(x, t)] + p(x, t), 0 ≤ t ≤ T, 0 < x < L. (4)

However, they only gave the analysis for α ∈ ( 38 , 1) and claimed that their scheme is conditionally
stable.

A main objective of this work is to develop a high-order method to solve two-term time fractional
sub-diffusion equations. To this end, we also adopt a second-order fractional difference formula in
time direction and compact technique in space direction, respectively. However, different from the
Fourier method applied by Li and Ding [16], we present a convergence and stability analysis by the
energy method. And it is proved that the proposed scheme is unconditionally stable and convergent
with the convergence order of O(τ 2 + h4) uniformly for 0 < α,β < 1, which can be seen as one of
the contributions of this paper. Moreover, we extend the method to two-dimensional case and give
the stability and convergence analysis as well.

The paper is organized as follows. In Section 2, we review a second-order approximation to the
Riemann–Liouville time fractional derivative. In Section 3, the full discretization scheme is derived
and the detailed theoretical analysis for the convergence and stability of the given schemes is provided
by a prior estimate. In Section 4, we extend the compact difference scheme to the two-dimensional
case and provide its convergence and stability analysis. Several numerical examples are carried out in
Section 5 to verify the numerical efficiency and accuracy. Finally, we conclude the paper with some
remarks in the last section.

2. A second-order difference approximation to the time fractional derivative

We begin with the definition of the Riemann–Liouville fractional derivative.

Definition 1 ([25]): The γ (0 < γ < 1) order Riemann–Liouville fractional derivative of the function
f (t) on [a,T] is defined as

aD
γ
t f (t) = 1


(1 − γ )

d
dt

∫ t

a

f (s)
(t − s)γ

ds, t ∈ [a,T].

Particularly, if a = −∞, we have

−∞Dγt f (t) = 1

(1 − γ )

d
dt

∫ t

−∞
f (s)

(t − s)γ
ds.

Using the fractional linearmulti-stepmethods, Lubich obtained theL-th order (L ≤ 6) approxima-
tion of the γ th derivative (γ > 0) or integral (γ < 0) by the expansion coefficients of the generating
functions δγL (z), where

δ
γ
L (z) =

[ L∑
i=1

1
i
(1 − z)i

]γ
. (5)

In [25], the first-order Grünwald difference formula,

Aγτ f (t) = 1
τγ

∞∑
k=0

g(γ )k f (t − kτ), (6)
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4 Z.-P. HAO ET AL.

was used to approximate the Riemann–Liouville fractional derivative uniformly, that is,

Aγτ f (t) = −∞Dγt f (t)+ O(τ ), (7)

where g(γ )k = (−1)k
( γ
k
)
. In fact, the coefficients {g(γ )k } in Equation (6) are the coefficients of the

power series of the function (1 − z)γ , with the case L = 1 in Equation (5). That is,

(1 − z)γ =
∞∑
k=0

(−1)k
(
γ

k

)
zk =

∞∑
k=0

g(γ )k zk, (8)

for all |z| < 1, and they can be evaluated recursively

g(γ )0 = 1, g(γ )k =
(
1 − γ + 1

k

)
g(γ )k−1, k = 1, 2, . . . . (9)

In order to achieve a second-order approximation of the Riemann–Liouville fractional deriva-
tive, we take L = 2 in Equation (5) and get the following second-order Lubich approximation to
Riemann–Liouville fractional derivative given by

−∞Dγt f (t) ≈ τ−γ
+∞∑
k=0

l(γ )k f (t − kτ), (10)

where l(γ )k are expansion coefficients of the generating function

δ
γ
2 (z) =

[
(1 − z)+ 1

2
(1 − z)2

]γ
= (1 − z)γ

[
1 + 1

2
(1 − z)

]γ
=

∞∑
k=0

l(γ )k zk, (11)

with

l(γ )k = (−1)k
(
3
2

)γ k∑
m=0

3−m
(

γ

k − m

)(
γ

m

)
=

(
3
2

)γ k∑
m=0

3−mg(γ )m g(γ )k−m. (12)

The above approach is suitable for a fixed value of γ to compute the coefficients. However, for
various values of γ , the recurrence relationships above are not appropriate. Instead, the fast Fourier
transform method [13] can be used.

Substituting z = e−iω, we have

δ
γ
2 (e

−iω) =
∞∑
k=0

l(γ )k e−ikω,

and coefficients l(γ )k are expressed in terms of the Fourier transform:

l(γ )k = 1
2π

∫ 2π

0
δ
γ
2 (e

−iω)eikω dω.

We shall be in a position to give a second-order difference formula for the Riemann–Liouville
derivative with the help of the following lemma.
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INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 5

Lemma 2.1 ([16]): Let f (t), −∞Dγ+2
t f (t) and their Fourier transforms belong to

L1(R) =
{
f (t)|

∫ ∞

−∞
|f (t)| dt < ∞

}

and denote

δ
γ
t f (t) = τ−γ

+∞∑
k=0

l(γ )k f (t − kτ), (13)

where l(γ )k is defined by Equation (12). Then

−∞Dγt f (t) = δ
γ
t f (t)+ O(τ 2) (14)

holds uniformly for t ∈ R.

Remark 1: Denote

C n+α(R) =
{
f |f ∈ L1(R),

∫ +∞

−∞
(1 + |k|)n+α|f̂ (k)| dk < ∞

}
,

where f̂ (k) = ∫ ∞
−∞ f (x)eikx dx is the Fourier transformation of f (x). Consider a well defined function

f (t) on the bounded interval [0,T]. If f (k)(0) = 0 (k = 0, 1, 2), the function f (t) can be extended to
be defined on R as follows

f̃ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, t < 0,
f (t), 0 ≤ t ≤ T,
v(t), T < t < 2T,
0, t ≥ 2T,

where v(t) is a smooth function satisfying v(k)(T) = f (k)(t)|t=T , v(k)(2T) = 0, k = 0, 1, 2. Suppose
f̂ ∈ C 2+α(R). Then the γ order Riemann–Liouville fractional derivatives of f (t) at each point t can
be approximated by

0D
γ
t f (t) = δ

γ
t f (t)+ O(τ 2) = τ−γ

[t/τ ]∑
k=0

l(γ )k f (t − kτ)+ O(τ 2). (15)

It should be noted that the condition f (k)(0) = 0 (k = 0, 1, 2)may bemore or less restrictive in practi-
cal applications. However, we can overcome this difficulty by making transformation of the equation
itself. For more details, see [8].

3. The numerical solution to the one-dimensional fractional sub-diffusion equation

We are now ready to establish our high-order compact difference schemes.

3.1. Derivation of the compact difference scheme

In the following analysis of the numerical method, we assume the problem (1)–(3) has a unique and
sufficiently smooth solution.
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6 Z.-P. HAO ET AL.

We partition the intervals [0, L] and [0,T] into a uniform mesh with the space step-size h = L/M
and time step-size τ = T/N, respectively. Here M,N are two positive integers. And the set of grid
points are denoted by xi = ih (0 ≤ i ≤ M) and tn = nτ (0 ≤ n ≤ N). Denote

�h = {xi|0 ≤ i ≤ M}, �τ = {tn|0 ≤ n ≤ N}.

For any grid function v = (v0, v1, . . . , vM) on�h, denote

δxvi−1/2 = 1
h
(vi − vi−1), δ2xvi = 1

h
(δxvi+1/2 − δxvi−1/2).

If u = (u0, u1, . . . , uN) is a grid function on�τ , introduce the notations

un+1/2 = 1
2
(un + un+1), δtun+1/2 = 1

τ
(un+1 − un).

To construct a compact difference scheme for solving Equations (1)–(3), the following lemmas are
needed.

Lemma 3.1 ([12]): (I) If f (t) ∈ C3[tn, tn+1], 0 ≤ n ≤ N − 1, it holds that

f ′(tn+1/2) = f (tn+1)− f (tn)
τ

− τ 2

16

∫ 1

0

[
f ′′′

(
tn+1/2 + μτ

2

)

+f ′′′
(
tn+1/2 − μτ

2

)]
(1 − μ)2 dμ,

where tn+1/2 = (n + 1
2 )τ .

(II) If f (t) ∈ C2[tn, tn+1], 0 ≤ n ≤ N − 1, it holds that

f (tn+1/2) = f (tn+1)+ f (tn)
2

− τ 2

8

∫ 1

0

[
f ′′

(
tn+1/2 + μτ

2

)
+ f ′′

(
tn+1/2 − μτ

2

)]
(1 − μ) dμ.

Lemma 3.2 ([12]): Denote θ(s) = (1 − s)3[5 − 3(1 − s)2]. If g(x) ∈ C6[xi−1, xi+1], xi+1 = xi + h,
xi−1 = xi − h, it holds that

1
12

[g′′(xi−1)+ 10g′′(xi)+ g′′(xi+1)]

= g(xi−1)− 2g(xi)+ g(xi+1)

h2
+ h4

360

∫ 1

0
[g(6)(xi − sh)+ g(6)(xi + sh)]θ(s) ds,

1 ≤ i ≤ M − 1.

Introduce the average operatorA as

Avi =
⎧⎨
⎩

1
12
(vi−1 + 10vi + vi+1), 1 ≤ i ≤ M − 1,

vi, i = 0 orM.

It is easy to check that

Avi =
(
I + h2

12
δ2x

)
vi, 1 ≤ i ≤ M − 1,

where I denotes the unit operator.
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INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 7

We are now going to derive the compact difference scheme. Obviously, Equation (1) is equivalent
to the following system

∂tu = (K1 0Dαt + K2 0D
β
t )w + p, (16)

w = ∂2x u. (17)

Define grid functions

Un
i = u(xi, tn), Wn

i = w(xi, tn), pni = p(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N.

For any fixed x ∈ [0, L], define the function

ũ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, t < 0,
u(x, t), 0 ≤ t ≤ T,
v(t), T < t < 2T,
0, t ≥ 2T,

where v(t) is a smooth function satisfying v(k)(T) = ∂kt u(x, t)|t=T , v(k)(2T) = 0, k = 0, 1, 2. Sup-
pose u(x, t) ∈ C(6,3)([0, L] × [0,T]) and the extended function ũ(t) ∈ C 2+α(R). Considering Equa-
tions (16)–(17) at the grid points (xi, tn), we have

∂tu(xi, tn) = (K1 0Dαt + K2 0D
β
t )w(xi, tn)+ p(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N,

w(xi, tn) = ∂2x u(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N.

For the space discretization, performing the average operatorA on both sides of two equalities above,
yields

A∂tu(xi, tn) = A(K1 0Dαt + K2 0D
β
t )w(xi, tn)+ Ap(xi, tn), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N,

Aw(xi, tn) = A∂2x u(xi, tn), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N.

It follows from Lemma 3.2 that

AWn
i = δ2xU

n
i + (Rx)ni , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N, (18)

where

(Rx)ni = h4

360

∫ 1

0
[∂6x u(xi − sh, tn)+ ∂6x u(xi + sh, tn)]θ(s) ds.

For the time discretization, due to Lemma 2.1, we have

Aut(xi, tn) = (K1δ
α
t + K2δ

β
t )AWn

i + Ap(xi, tn)+ O(τ 2), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N. (19)

Averaging Equations (18)–(19) at tn and tn+1, it follows from Lemma 3.1 that

AWn+1/2
i = δ2xU

n+1/2
i + (Rx)

n+1/2
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 (20)

AδtUn+1/2
i = (K1δ

α
t + K2δ

β
t )AWn+1/2

i + Apn+1/2
i + O(τ 2),

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1. (21)

Substituting Equation (20) into Equation (21) and noticing Equation (15) yield

AδtUn+1/2
i = (K1δ

α
t + K2δ

β
t )δ

2
xU

n+1/2
i + Apn+1/2

i + Rni , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (22)
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8 Z.-P. HAO ET AL.

where there exists a constant cu independent of τ and h such that

|Rni | ≤ cu(τ 2 + h4), 0 ≤ i ≤ M, 0 ≤ n ≤ N − 1. (23)

Omitting the small term Rni in Equation (22) and denoting by uni the numerical approximation of
Un
i , noticing the initial-boundary conditions (2)–(3)

Un
0 = ϕ0(tn), Un

M = ϕ1(tn), 1 ≤ n ≤ N, (24)

U0
i = 0, 0 ≤ i ≤ M, (25)

we get the compact difference scheme

Aδtun+1/2
i = (K1δ

α
t + K2δ

β
t )δ

2
xu

n+1/2
i + Apn+1/2

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (26)

un0 = ϕ0(tn), unM = ϕ1(tn), 1 ≤ n ≤ N, (27)

u0i = 0, 0 ≤ i ≤ M. (28)

Remark 2: When α = 0, β = 0, the scheme (26)–(28) corresponds to the classical compact differ-
ence scheme for the heat equation.

3.2. Analysis of the compact difference scheme

Next we shall give the stability and convergence analysis for the scheme (26)–(28). Let

Vh = {v|v is a grid function on�h and v0 = vM = 0}.
For any u, v ∈ Vh, we define the discrete inner products

(u, v) = h
M−1∑
i=1

uivi, 〈δxu, δxv〉 = h
M∑
i=1

δxui−1/2 · δxvi−1/2,

and induced norms

‖u‖ =
√
(u, u), |u|1 =

√
〈δxu, δxu〉.

Denote maximum norm by

‖u‖∞ = max
0≤i≤M

|ui|.
It is easy to check that

(δ2xu, v) = −〈δxu, δxv〉. (29)

Some additional lemmas are still needed in order to prove the stability and convergence of the
scheme (26)–(28).

Lemma 3.3: For any u, v ∈ Vh, it holds that

(Au, v) = (u,Av).
Proof: Noticing thatA = I + (1/12)h2δ2x , we have

(Au, v) = (u, v)+ 1
12

h2(δ2xu, v) = (u, v)− 1
12

h2〈δxu, δxv〉

= (u, v)+ 1
12

h2(u, δ2xv) = (u,Av).

�
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Lemma 3.4: For any v ∈ Vh, it holds that

2
3
‖v‖2 ≤ (Av, v) ≤ ‖v‖2.

Proof: Similar to the above lemma, we have

(Av, v) = (v, v)+ 1
12

h2(δ2xv, v) = ‖v‖2 − 1
12

h2|v|21 ≤ ‖v‖2.

Using the inverse estimate |v|21 ≤ 4/h2‖v‖2 , we get

(Av, v) = ‖v‖2 − 1
12

h2|v|21 ≥ ‖v‖2 − 4
12

‖v‖2 = 2
3
‖v‖2.

The proof is completed.
From the above lemma, we can define the equivalent norm ‖ · ‖ as

‖v‖A =
√
(Av, v), (30)

and it follows that
2
3
‖v‖2 ≤ ‖v‖2A ≤ ‖v‖2. (31)

�

The following lemma plays an important role in the analysis.

Lemma 3.5: Let {l(α)k }∞k=0 be defined as in Equation (12), 0 < α ≤ 1 then for any positive integer m
and real vector (v0, v1, . . . , vm)T ∈ R

m+1, it holds that

m∑
n=0

( n∑
k=0

l(α)k vn−k

)
vn ≥ 0.

Proof: To simplify the proof, we denote lk := l(α)k without ambiguity. Introduce the matrix W as
following

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l0
l1
2

l2
2

· · · lm
2

l1
2

l0
l1
2

. . .
...

l2
2

l1
2

. . . . . . l2
2

...
. . . . . . l0

l1
2

lm
2

· · · l2
2

l1
2

l0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To prove above quadratic form is non-negative, it is suffice to prove the symmetric Toeplitz matrixW
is positive semi-definite. Notice that the generating function (see [30]) ofW is given by

f (α, x) = l0 + 1
2

∞∑
k=1

lkeikx + 1
2

∞∑
k=1

lke−ikx.

D
ow

nl
oa

de
d 

by
 [

Pu
rd

ue
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 0

0:
44

 2
8 

Ju
ly

 2
01

6 



10 Z.-P. HAO ET AL.

Recalling equality (11), we have

f (α, x) = 1
2
[δα(eix)+ δα(e−ix)] = 1

2
(1 − eix)α

[
1 + 1

2
(1 − eix)

]α

+ 1
2
(1 − e−ix)α

[
1 + 1

2
(1 − e−ix)

]α
.

As mentioned in [4], we only need to consider the principal value of f (α, x) for x ∈ [0,π]. By
calculation, we obtain

(1 − e±ix)α =
(
2 sin

x
2

)α
e±iα((x/2)−(π/2)),(

1 + 1
2
(1 − e±ix)

)α
=

(
1 + 3 sin2

x
2

)α/2
e±iαθ ,

where

θ = arctan
(

sin x
cos x − 3

)
∈

(
−π

6
, 0

]
.

It follows that

f (α, x) =
(
2 sin

x
2

)α (
1 + 3 sin2

x
2

)α/2
cos

[
α
(x
2

− π

2
+ θ

)]
.

It is not difficult to check that

tan
(x
2

)
= sin x

1 + cos x
≥ sin x

3 − cos x
= tan(−θ) ≥ 0, x ∈ [0,π].

Thus x/2 ≥ −θ for x ∈ [0,π].
Since

−π
2

≤ x
2

− π

2
+ θ ≤ π

2
, x ∈ [0,π],

we have f (α, x) ≥ 0 for α ∈ (0, 1). The desired result follows as a result of the Grenander–Szegö
Theorem [4]. The proof is completed. �

Now we turn to the stability and convergence analysis of schemes (26)–(28). To this end, a prior
estimate will be given to simplify the proof.

Lemma 3.6: Suppose that {vni |0 ≤ i ≤ M, 0 ≤ n ≤ N} is the solution of the following difference scheme

Aδtvn+1/2
i − (K1δ

α
t + K2δ

β
t )δ

2
xv

n+1/2
i = Sni , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (32)

vn0 = 0, vnM = 0, 1 ≤ n ≤ N − 1, (33)

v0i = ψi, 0 ≤ i ≤ M, (34)

then

‖vm‖2 ≤ 3 exp(3T)(τ
m−1∑
n=0

‖Sn‖2 + ‖ψ‖2), 1 ≤ m ≤ N.
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Proof: Making the inner product of (32) with vn+1/2, we have

(Aδtvn+1/2, vn+1/2)− ((K1δ
α
t + K2δ

β
t )δ

2
xv

n+1/2, vn+1/2) = (Sn, vn+1/2), 0 ≤ n ≤ N − 1. (35)

For the first term on the left-hand side, from Lemmas 3.3 and 3.4, we obtain

(Aδtvn+1/2, vn+1/2) = 1
2τ
(‖vn+1‖2A − ‖vn‖2A). (36)

For the second term on the left-hand side, noting Equation (29), we have

− ((K1δ
α
t + K2δ

β
t )δ

2
xv

n+1/2, vn+1/2) = 〈(K1δ
α
t + K2δ

β
t )δxv

n+1/2, δxvn+1/2〉. (37)

As to the term on the right-hand side, we get

(Sn, vn+1/2) ≤ ‖Sn‖ · ‖vn+1/2‖. (38)

Substituting Equations (36)–(38) into Equation (35) and summing up the obtained inequality for n
from 0 tom − 1 lead to

1
2τ

(‖vm‖2A − ‖v0‖2A
) +

m−1∑
n=0

〈(K1δ
α
t + K2δ

β
t )δxv

n+1/2, δxvn+1/2〉

≤
m−1∑
n=0

‖Sn‖ · ‖vn+1/2‖, 1 ≤ m ≤ N.

It follows from Lemma 3.5 that
m−1∑
n=0

〈(K1δ
α
t + K2δ

β
t )δxv

n+1/2, δxvn+1/2〉

= h
M−1∑
i=0

(
K1τ

−α
m−1∑
n=0

n∑
k=0

l(α)k δxv
n−k+ 1

2
i+1/2 · δxvn+1/2

i+1/2

+K2τ
−β

m−1∑
n=0

n∑
k=0

l(β)k δxv
n−k+ 1

2
i+1/2 · δxvn+1/2

i+1/2

)

≥ 0.

Consequently,

1
2τ
(‖vm‖2A − ‖v0‖2A) ≤

m−1∑
n=0

‖Sn‖ · ‖vn+1/2‖,

≤ 1
2

m−1∑
n=0

(‖Sn‖2 + ‖vn+1/2‖2), 1 ≤ m ≤ N.

Utilizing the inequality (31) , we have

2
3
‖vm‖2 ≤ τ

m−1∑
n=0

(‖Sn‖2 + ‖vn+1/2‖2)+ ‖v0‖2A

≤ τ

m−1∑
n=0

‖vn‖2 + τ

2
‖vm‖2 + τ

m−1∑
n=0

‖Sn‖2 + ‖v0‖2, 1 ≤ m ≤ N.
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12 Z.-P. HAO ET AL.

Consequently, when τ ≤ 2
3 ,

‖vm‖2 ≤ 3τ
m−1∑
n=0

‖vn‖2 + 3τ
m−1∑
n=0

‖Sn‖2 + 3‖v0‖2, 1 ≤ m ≤ N.

Then the desired result follows by the discrete Gronwall inequality. The proof is completed. �

With the above prior estimate, the following result is easily obtained.

Theorem 3.7: The difference scheme (26)–(28) is unconditionally stable to the initial value and the
right-hand term for all 0 < α,β < 1.

We now consider the convergence of the scheme (26)–(28).

Theorem 3.8: Let {Un
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} be the exact solution of problem (1)–(3), and {uni } be

the solution of difference schemes (26)–(28). Then there exists a constant c independent of τ and h such
that the estimate

‖Un − un‖ ≤ c(τ 2 + h4), 1 ≤ n ≤ N,

holds for all 0 < α,β < 1.More precisely, c = √
3TL exp(3T/2)cu.

Proof: Let

eni = Un
i − uni , 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Subtracting Equations (26)–(28) fromEquations (22), (24)–(25), we get the error system of equations:

Aδten+1/2
i − (K1δ

α
t + K2δ

β
t )δ

2
xe

n+1/2
i = Rni , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (39)

en0 = 0, enM = 0, 1 ≤ n ≤ N, (40)

e0i = 0, 0 ≤ i ≤ M. (41)

It follows from Lemma 3.6 and the truncation error bound (23) that

‖en‖2 ≤ exp(3T)

(
3τ

n−1∑
l=0

‖Rl‖2
)

≤ 3TL exp(3T)c2u(τ
2 + h4)2 = c2(τ 2 + h4)2, 1 ≤ n ≤ N.

This completes the proof. �

4. Extension to the two-dimensional fractional sub-diffusion equation

In this section, we consider the numerical algorithm and analysis for solving the following two-
dimensional equation:

∂tu(x, y, t) = (K1 0Dαt + K2 0D
β
t )�u(x, y, t)+ p(x, y, t), (x, y) ∈ �, 0 < t ≤ T (42)

with the initial-boundary conditions

u(x, y, t) = ϕ(x, y, t), (x, y) ∈ ∂�, 0 < t ≤ T, (43)

u(x, y, 0) = 0, (x, y) ∈ �̄, (44)

where� = (0, L1)× (0, L2), ∂� is the boundary of� and� is the Laplace operator. In the subsequent
analysis of the numerical method, we assume the problem (42)–(44) has a unique and sufficiently
smooth solution.
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For spatial approximation, take two integers M1,M2 and let h1 = L1/M1, h2 = L2/M2, xi = ih1
(0 ≤ i ≤ M1), yj = jh2 (0 ≤ j ≤ M2). Let �̄h = {(xi, yj)|0 ≤ i ≤ M1, 0 ≤ j ≤ M2}, and �h = �̄h ∩
�, and ∂�h = �̄h ∩ ∂�. For any grid function v = {vi,j|0 ≤ i ≤ M1, 0 ≤ j ≤ M2}, denote

δxvi−1/2,j = 1
h1
(vi,j − vi−1,j), δ2xvi,j = 1

h1
(δxvi+1/2,j − δxvi−1/2,j).

Similar notations δyvi,j−(1/2), δ2yvi,j can be defined. The spatial average operators are defined as

A1vi,j =
⎧⎨
⎩

1
12
(vi−1,j + 10vi,j + vi+1,j), 1 ≤ i ≤ M1 − 1,

vi,j, i = 0 orM1,
0 ≤ j ≤ M2.

A2vi,j =
⎧⎨
⎩

1
12
(vi,j−1 + 10vi,j + vi,j+1), 1 ≤ j ≤ M2 − 1,

vi,j, j = 0 orM2,
0 ≤ i ≤ M1.

In addition, denote�hui,j = δ2xui,j + δ2yui,j.
Let

w = �u,

then Equation (42) is equivalent to the following system

∂tu = (K1 0Dαt + K2 0D
β
t )w + p, (45)

w = �u. (46)

Denote

Un
i,j = u(xi, yj, tn), Wn

i,j = w(xi, yj, tn), pni,j = p(xi, yj, tn), (xi, yj) ∈ �̄h, 0 ≤ n ≤ N.

Suppose u(x, y, t) ∈ C(6,6,3)([0, L1] × [0, L2] × [0,T]) and the extended function, similarly
defined as in Section 3, ũ(t) ∈ C 2+α(R). Considering Equations (45)–(46) at the grid points
(xi, yj, tn), we have

∂tu(xi, yj, tn) = (K1 0Dαt + K2 0D
β
t )w(xi, yj, tn)+ p(xi, yj, tn), (xi, yj) ∈ �̄h, 0 ≤ n ≤ N,

w(xi, yj, tn) = ∂2x u(xi, yj, tn)+ ∂2y u(xi, yj, tn), (xi, yj) ∈ �̄h, 0 ≤ n ≤ N.

For the space discretization, performing the average operatorsA1 andA2 on both sides of the above
equalities yields

A1A2∂tu(xi, yj, tn) = A1A2(K1 0Dαt + K2 0D
β
t )w(xi, yj, tn)+ A1A2p(xi, yj, tn), (xi, yj) ∈ �h,

0 ≤ n ≤ N,

A1A2w(xi, yj, tn) = A2[A1∂
2
x u(xi, yj, tn)] + A1

[A2∂
2
y u(xi, yj, tn)

]
, (xi, yj) ∈ �h,

0 ≤ n ≤ N.

It follows from Lemma 3.2 that

A1A2Wn
i,j = A2δ

2
xU

n
i,j + A1δ

2
yU

n
i,j + A2(Rx)ni,j + A1(Ry)ni,j,

(xi, yj) ∈ �h, 0 ≤ n ≤ N. (47)
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14 Z.-P. HAO ET AL.

where

(Rx)ni,j = h41
360

∫ 1

0
[∂6x u(xi − sh1, yj, tn)+ ∂6x u(xi + sh1, yj, tn)]θ(s) ds,

Ry)ni,j = h42
360

∫ 1

0
[∂6y u(xi, yj − sh2, tn)+ ∂6y u(xi, yj + sh2, tn)]θ(s) ds.

For the time discretization, due to Lemma 2.1, we have

A1A2ut(xi, yj, tn) = (K1δ
α
t + K2δ

β
t )A1A2Wn

i,j + A1A2p(xi, yj, tn)+ O(τ 2),

(xi, yj) ∈ �h, 0 ≤ n ≤ N. (48)

Averaging Equations (47)–(48) at tn and tn+1, it follows from Lemma 3.1 that

A1A2W
n+1/2
i,j = A2δ

2
xU

n+1/2
i,j + A1δ

2
yU

n+1/2
i,j + A2(Rx)

n+1/2
i,j + A1(Ry)

n+1/2
i,j ,

(xi, yj) ∈ �h, 0 ≤ n ≤ N − 1. (49)

A1A2δtU
n+1/2
i,j = (K1δ

α
t + K2δ

β
t )A1A2W

n+1/2
i,j + A1A2p

n+1/2
i,j + O(τ 2),

(xi, yj) ∈ �h, 0 ≤ n ≤ N − 1. (50)

Substituting Equation (49) into Equation (50) and noticing Equation (15) yield

A1A2δtU
n+1/2
i,j = (K1δ

α
t + K2δ

β
t )(A2δ

2
xU

n+1/2
i,j + A1δ

2
yU

n+1/2
i,j )+ A1A2p

n+1/2
i,j

+ O(τ 2 + h41 + h42),

(xi, yj) ∈ �h, 0 ≤ n ≤ N − 1. (51)

Omitting the small term and denoting by uni,j the numerical approximation ofUn
i,j, noticing the initial-

boundary conditions,

Un
i,j = ϕ(xi, yj, tn), (xi, yj) ∈ ∂�h, 1 ≤ n ≤ N, (52)

U0
i,j = 0, (xi, yj) ∈ �̄h, (53)

we get the compact difference scheme

A1A2δtu
n+1/2
i,j = (K1δ

α
t + K2δ

β
t )(A2δ

2
xu

n+1/2
i,j + A1δ

2
yu

n+1/2
i,j )+ A1A2p

n+1/2
i,j ,

(xi, yj) ∈ �h, 0 ≤ n ≤ N − 1, (54)

uni,j = ϕ(xi, yj, tn), (xi, yj) ∈ ∂�h, 1 ≤ n ≤ N, (55)

u0i,j = 0, (xi, yj) ∈ �̄h, (56)

4.1. Analysis of the compact difference scheme

In order to analyse the stability and convergence of the compact difference scheme (54)–(56), similar
to the previous section, we introduce discrete inner products and corresponding norms. Let

Vh = {v|v is a grid function in �̄h and vi,j = 0 if (xi, yj) ∈ ∂�h}.
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For any u, v ∈ Vh, we define

(u, v) = h1h2
M1−1∑
i=1

M2−1∑
j=1

ui,jvi,j,

〈δxu, δxv〉 = h1h2
M1∑
i=1

M2−1∑
j=1

δxui−1/2,j · δxvi−1/2,j,

And similarly for 〈δyu, δyv〉. In addition, norms are given by

‖u‖ =
√
(u, u), ‖δxu‖ =

√
〈δxu, δxu〉,

‖u‖∞ = max
0≤i≤M1,0≤j≤M2

|ui,j|.

Also, ‖δyu‖ can be defined similarly. Obviously, we have

(δ2xu, v) = −〈δxu, δxv〉, (δ2yu, v) = −〈δyu, δyv〉. (57)

Lemma 4.1 ((see [10])): For any v ∈ Vh, it holds that

1
3‖v‖2 ≤ (A1A2v, v) ≤ ‖v‖2.

Thus, we can define the equivalent norm of ‖v‖ as

‖v‖A =
√
(A1A2v, v),

that is,

1
3‖v‖2 ≤ ‖v‖2A ≤ ‖v‖2. (58)

A prior estimate is given to show the stability and convergence firstly.

Lemma 4.2: Suppose {vni,j|0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ n ≤ N} is the solution of the following differ-
ence scheme

A1A2δtv
n+1/2
i,j − (K1δ

α
t + K2δ

β
t )(A2δ

2
xv

n+1/2
i,j + A1δ

2
yv

n+1/2
i,j ) = Sni,j,

(xi, yj) ∈ �h, 0 ≤ n ≤ N − 1, (59)

vni,j = ϕ(xi, yj, tn), (xi, yj) ∈ ∂�h, 1 ≤ n ≤ N, (60)

v0i,j = ψi,j, (xi, yj) ∈ �̄h, (61)

then

‖vn‖2 ≤ 6 exp(6T)(τ
n−1∑
l=0

‖Sl‖2 + ‖ψ‖2), 1 ≤ n ≤ N.
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16 Z.-P. HAO ET AL.

Proof: Making the inner product of (59) with vn+1/2, we obtain

(A1A2δtv
n+1/2, vn+1/2)− ((K1δ

α
t + K2δ

β
t )(A2δ

2
x + A1δ

2
y )v

n+1/2, vn+1/2)

= (Sn, vn+1/2), 0 ≤ n ≤ N − 1. (62)

For the first term on the left-hand side of Equation (62), from Lemma 4.1, we have

(A1A2δtv
n+1/2, vn+1/2) = 1

2τ
(‖vn+1‖2A − ‖vn‖2A). (63)

SinceA1 andA2 are positive definite and self-adjoint, we can consider their square roots denoted by
Qx and Qy, respectively. For the second term on the left-hand side of Equation (62), observing the
commutativity of operators in different spatial directions, we have

− ((K1δ
α
t + K2δ

β
t )(A2δ

2
x + A1δ

2
y )v

n+1/2, vn+1/2)

= −((K1δ
α
t + K2δ

β
t )Qyδ

2
xv

n+1/2,Qyv
n+1/2)− ((K1δ

α
t + K2δ

β
t )Qxδ

2
yv

n+1/2,Qxv
n+1/2)

= 〈(K1δ
α
t + K2δ

β
t )Qyδxv

n+1/2,Qyδxv
n+1/2〉 + 〈(K1δ

α
t + K2δ

β
t )Qxδyv

n+1/2,Qxδyv
n+1/2〉. (64)

For the term on the right-hand side of Equation (62), we get

(Sn, vn+1/2) ≤ ‖Sn‖ · ‖vn+1/2‖. (65)

Substituting Equations (63)–(65) into Equation (62) yields

1
2τ
(‖vn+1‖2A − ‖vn‖2A)+ 〈(K1δ

α
t + K2δ

β
t )Qyδxv

n+1/2,Qyδxv
n+1/2〉

+ 〈(K1δ
α
t + K2δ

β
t )Qxδyv

n+1/2,Qxδyv
n+1/2〉 ≤ ‖Sn‖ · ‖vn+1/2‖.

Summing up for n from 0 tom − 1 gives

1
2τ
(‖vm‖2A − ‖v0‖2A)+

m−1∑
n=0

〈(K1δ
α
t + K2δ

β
t )Qyδxv

n+1/2,Qyδxv
n+1/2〉

+
m−1∑
n=0

〈(K1δ
α
t + K2δ

β
t )Qxδyv

n+1/2,Qxδyv
n+1/2〉 ≤

m−1∑
n=0

‖Sn‖ · ‖vn+1/2‖.

Due to Lemma 3.5, we know that both the second term and the third term on the left-hand side of
the above inequality are non-negative. It follows that

1
2τ
(‖vm‖2A − ‖v0‖2A) ≤

m−1∑
n=0

‖Sn‖ · ‖vn+1/2‖

≤ 1
2

m−1∑
n=0

(‖Sn‖2 + ‖vn+1/2‖2).

Following the similar argument as that in the previous section, we can get the desired result. This
completes the proof. �

From the above prior estimate, it is straightforward to obtain the following result.
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Theorem 4.3: The difference scheme (54)–(56) is unconditionally stable to the initial value and the
right-hand term for all 0 < α,β < 1.

We now focus on the convergence of the difference scheme (54)–(56).

Theorem 4.4: Let {Un
i,j|0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ n ≤ N} be the exact solution of problem

(42)–(44), and {uni,j|0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ n ≤ N} be the solution of difference scheme
(54)–(56). Then there exists a constant c such that the following estimate

‖Un − un‖ ≤ c(τ 2 + h41 + h42), 1 ≤ n ≤ N,

holds for all 0 < α,β < 1.

Proof: Let

eni,j = Un
i,j − uni,j, 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ n ≤ N.

Subtracting Equations (54)–(56) from Equations (51)–(52), we get the error system of the equations:

A1A2δte
n+1/2
i,j − (K1δ

α
t + K2δ

β
t )(A2δ

2
xe

n+1/2
i,j + A1δ

2
y e

n+1/2
i,j ) = Rn+1/2

i,j ,

(xi, yj) ∈ �h, 0 ≤ n ≤ N − 1,

eni,j = 0, (xi, yj) ∈ ∂�h, 1 ≤ n ≤ N,

e0i,j = 0, (xi, yj) ∈ �̄h,

where there exists a constant c̃u such that

|Rn+1/2
i,j | ≤ c̃u(τ 2 + h41 + h42), (xi, yj) ∈ �h, 0 ≤ n ≤ N − 1.

It follows from Lemma 4.2 that

‖en‖2 ≤ 6 exp(6T)

(
τ

n−1∑
l=0

‖Rn‖2
)

≤ 6L1L2T exp(6T)c̃2u(τ
2 + h41 + h42)

2

= c2(τ 2 + h41 + h42)
2, 1 ≤ n ≤ N.

This completes the proof. �

5. Numerical examples

In this section, we carry out numerical experiments to show the effectiveness and convergence orders
of the proposed schemes.

In the runs, we compute the maximum norm errors of the numerical solution.
Let

E(h, τ) = max
0≤k≤N

‖Uk − uk‖∞

and assume

E(h, τ) = O(τ p + hq).

If h is small enough, then E(h, τ) ≈ O(τ p). Consequently, E(h, 2τ)/E(h, τ) ≈ 2p and hence
p ≈ log2(E(h, 2τ)/E(h, τ)) is the convergence order with respect to the temporal step-size. If
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Table 1. Numerical convergence order of the scheme (26)–(28) in the temporal direction with a fixed space step-size h = 1
100

(Example 5.1).

α N E(h, τ) p

0 10 2.4999e−003 –
20 6.2494e−004 2.0001
40 1.5619e−004 2.0004
80 3.9001e−005 2.0017

0.1 10 1.8255e−003 –
20 4.5697e−004 1.9982
40 1.1420e−004 2.0006
80 2.8504e−005 2.0023

0.5 10 1.2033e−003 –
20 2.1881e−004 2.4593
40 5.2748e−005 2.0525
80 1.3137e−005 2.0054

0.9 10 4.1536e−003 –
20 1.0110e−003 2.0386
40 2.4522e−004 2.0437
80 6.0031e−005 2.0303

τ is small enough, then E(h, τ) ≈ O(hq). Consequently, E(2h, τ)/E(h, τ) ≈ 2q and hence q ≈
log2(E(2h, τ)/E(h, τ)) is the convergence order with respect to the spatial step-size. Denote

p(h, τ) = log2

(
E(h, 2τ)
E(h, τ)

)
, q(h, τ) = log2

(
E(2h, τ)
E(h, τ)

)
.

Firstly, we examine a special case of the anomalous diffusion equation with the single fractional
order term.

Example 5.1: Consider the following example [31],

∂tu(x, t) = 0Dαt ∂
2
x u(x, t)+

[
2t + 8π2t2−α


(3 − α)

]
sin(2πx), 0 < x < 1, 0 < t ≤ 1, (66)

u(0, t) = 0, u(1, t) = 0, 0 < t ≤ 1, (67)

u(x, 0) = 0, 0 ≤ x ≤ 1, (68)

with the exact solution given by u(x, t) = t2 sin(2πx).

We test the temporal errors and convergence orders by choosing different α, letting τ vary and
fixing the space step-size h sufficiently small to avoid contamination of the spatial errors. Table 1
shows the numerical results when h = 1/100, τ = 1/10, 1/20, 1/40, and 1/80, respectively. It can be
observed fromTable 1 that the convergence order of the compact difference scheme (26)–(28) is about
2 with respect to the temporal step-size.

Next, we test the spatial errors and convergence orders by letting h vary and fixing the
time step-size τ sufficiently small to avoid contamination of the temporal errors. Table 2 shows
the numerical results when τ = 1

1000 , h = 1
4 , h = 1

8 , h = 1
16 and h = 1

32 . It can be seen from
Table 2 that the convergence order of the scheme (26)–(28) is about 4 with respect to the spatial
step-size.

Secondly, we consider a more general case.
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Table 2. Numerical convergence order of the scheme (26)–(28) in the spatial direction with a fixed temporal step-size τ = 1
1000

(Example 5.1).

α M E(h, τ) q

0 4 2.6659e−002 –
8 1.5445e−003 4.1094
16 9.4526e−005 4.0303
32 5.6463e−006 4.0653

0.1 4 2.6727e−002 –
8 1.5484e−003 4.1095
16 9.4828e−005 4.0293
32 5.7281e−006 4.0492

0.5 4 2.7021e−002 –
8 1.5652e−003 4.1097
16 9.6106e−005 4.0256
32 6.0565e−006 3.9881

0.9 4 2.7306e−002 –
8 1.5816e−003 4.1098
16 9.7383e−005 4.0215
32 6.4089e−006 3.9255

Table 3. Numerical convergence order of the scheme (26)–(28) in the temporal direction with a fixed space step-size h = 1/20
(Example 5.2).

α β N E(h, τ) p

0.05 0.35 5 2.0977e−003 –
10 4.8697e−004 2.1069
20 1.1660e−004 2.0623
40 2.8483e−005 2.0333
80 7.0362e−006 2.0172

0.3 0.7 5 6.6713e−004 –
10 2.0076e−004 1.7325
20 5.0812e−005 1.9823
40 1.2920e−005 1.9755
80 3.2693e−006 1.9826

Example 5.2:

∂tu(x, t) = (0Dαt + _0Dβt )∂
2
x u(x, t)+ p(x, t) 0 < x < 1, 0 < t ≤ 1,

u(0, t) = 0, u(1, t) = t3−α−β sin 1, 0 < t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1,

with the source term

p(x, t) = [(3 − α − β)t2−α−β + 
(4 − α − β)


(4 − 2α − β)
t3−2α−β + 
(4 − α − β)


(4 − α − 2β)
t3−α−2β ] sin x.

It is easy to check that the exact solution is u(x, t) = t3−α−β sin x.

Take (α,β) = (0.05, 0.35), (0.3, 0.7), respectively. From Table 3, we can see that the convergence
order with respect to temporal step-size is about 2, which is in accordance with our theoretical results.

Finally, a two-dimensional case will be given to illustrate the correctness of the theoretical results.
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Table 4. Numerical convergence order of the scheme (54)–(56) in the temporal direction with fixed space step-sizes h1 = h2 =
π/20 (Example 5.3).

α β N E(h, τ) p

0.05 0.3 5 1.4128e−002 –
10 3.2287e−003 2.1295
20 7.6794e−004 2.0719
40 1.8592e−004 2.0463
80 4.4556e−005 2.0610

0.85 0.95 5 2.5559e−002 –
10 7.7275e−003 1.7257
20 2.0762e−003 1.8960
40 5.3913e−004 1.9452
80 1.3871e−004 1.9586

Example 5.3: We consider the problem (42)–(44) with an exact solution:

u(x, y, t) = t3 sin x sin y (69)

in the domain �× [0,T], where K1 = 1, K2 = 2, � = (0,π)× (0,π). It can be checked that the
corresponding forcing term and initial-boundary conditions are, respectively,

p(x, y, t) = [3t2 + 12

(4 − α)

t3−α + 24

(4 − β)

t3−β] sin x sin y,

ϕ(x, y, t) = 0, u(x, y, 0) = 0. (70)

Table 4 shows that the convergence order with respect to temporal step-size is about 2, which is in
a good agreement with our theoretical prediction.

6. Conclusion

In this paper, based on the Lubich’s second-order operator in time direction and combining the
compact technique in space discretization, a compact difference scheme is derived to solve the time
fractional sub-diffusion equations for both one- and two-dimensional cases. The stability and con-
vergence are proved by the energy method and convergence orders are two in temporal direction
and four in spatial direction, respectively. Furthermore, several numerical examples are employed to
validate our theoretical results on the proposed compact differences scheme. Our method can be eas-
ily employed to prove that the proposed scheme in [16] for Equation (4) is unconditionally stable for
0 < α < 1. In the future work, we plan to apply the proposedmethod to othermore realistic problem.
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