# Hilbert-Kunz function of the Rees algebra 

Kriti Goel Indian Institute of Technology Bombay, India

kritigoel.maths@gmail.com

## Abstract

We prove that the Hilbert-Kunz function of the ideal $(J, I t) \mathcal{R}(I)$, where $J$ is an $\mathfrak{m -}$ primary ideal and $I$ is a parameter ideal of a 1-dimensional local ring $(R, \mathfrak{m})$, is a quasipolynomial for large values.

For $s \in \mathbb{N}$, we compute the Hilbert-Samuel function of the $R$-module $I^{[s]}$ and obtain an explicit description of the generalized Hilbert Kunz function of the ideal $(I, I t) \mathcal{R}(I)$ when $I$ is a parameter ideal in a Cohen-Macaulay local ring of dimension $d \geq 2$, proving that the generalized Hilbert-Kunz function is a piecewise polynomial in this case.

## Preliminaries

Let $(R, \mathfrak{m})$ be a $d$-dimensional Noetherian local ring of prime characteristic $p>0$ and let $I$ be an $\mathfrak{m}$-primary ideal.

- Put $q=p^{e}$ for some $e \in \mathbb{N}$. The $q^{t h}$-Frobenius power of $I$ is the ideal $I^{[q]}=\left(x^{q} \mid x \in I\right)$.
- The function $e \mapsto \ell_{R}\left(R / I^{\left[p^{e}\right]}\right)$ is called the Hilbert-Kunz function of $R$ with respect to $I$.
- P. Monsky proved that

$$
\ell_{R}\left(R / I^{[q]}\right)=e_{H K}(I, R) q^{d}+O\left(q^{d-1}\right)
$$

where $e_{H K}(I, R)$ is a positive real number called the Hilbert-Kunz multiplicity of $R$ with respect to $I$. We write $e_{H K}(R):=e_{H K}(\mathfrak{m}, R)$ and $e_{H K}(I):=e_{H K}(I, R)$.

- The Hilbert-Samuel function of $R$ with respect to $I$ is defined as $H_{I}(n):=\ell_{R}\left(R / I^{n}\right)$. It is a polynomial function of $n$ of degree $d$. In particular, there exists a polynomial $P_{I}(x) \in \mathbb{Q}[x]$ such that $H_{I}(n)=P_{I}(n)$ for all large $n$.
- The Hilbert-Samuel multiplicity of $R$ with respect to $I$ is defined as

$$
e(I, R):=\lim _{n \rightarrow \infty} \frac{\ell_{R}\left(R / I^{n}\right)}{n^{d} / d!}
$$

We write $e(I):=e(I, R)$ and $e(R):=e(\mathfrak{m}, R)$.

- A quasi-polynomial of degree $d$ is a function $f: \mathbb{Z} \rightarrow \mathbb{C}$ of the form

$$
f(n)=c_{d}(n) n^{d}+c_{d-1}(n) n^{d-1}+\cdots+c_{0}(n)
$$

where each $c_{i}(n)$ is a periodic function and $c_{d}(n)$ is not identically zero

- Define $a_{i}(R):=\max \left\{u \in \mathbb{Z} \mid \mathrm{H}_{\mathfrak{m}}^{i}(R)_{u} \neq 0\right\}$ if $\mathrm{H}_{\mathfrak{m}}^{i}(R) \neq 0$, and $-\infty$ otherwise.


## Known Results

- (P. Monsky) In the case of 1-dimensional rings, the Hilbert-Kunz function

$$
\ell_{R}\left(R / I^{\left[p^{e}\right]}\right)=e_{H K}(I, R) q+\delta_{e}
$$

where $\delta_{e}$ is a periodic function of $e$, for large $e$.

- Let $\mathcal{R}(I)=\oplus_{n \geq 0} I^{n} t^{n}$ denote the Rees algebra of $I$.
- (K. Eto - K.-i. Yoshida) Put $c(d)=(d / 2)+$ $d /(d+1)$ !. Then

$$
e_{H K}(\mathcal{R}(I)) \leq c(d) \cdot e(I)
$$

Moreover, equality holds if and only if $e_{H K}(R)=e(I)$.

Joint work with Mitra Koley and Jugal K. Verma

## DIMENSION 1

Theorem 1. Let $(R, \mathfrak{m})$ be a 1-dimensional Noetherian local ring with prime characteristic $p>0$. Let $I, J$ be $\mathfrak{m}$-primary ideals. Then

$$
e_{H K}((J, I t) \mathcal{R}(I))=e(J) .
$$

Theorem 2. Let $(R, \mathfrak{m})$ be a 1-dimensional CohenMacaulay local ring with prime characteristic $p>$ 0 . Let I be a parameter ideal and $J$ be an $\mathfrak{m}$-primary ideal. Then for $q=p^{e}$, where $e \in \mathbb{N}$ is large,

$$
\ell_{R}\left(\frac{\mathcal{R}(I)}{(J, I t)^{[q]}}\right)=e(J) q^{2}+\alpha_{J}(e) q
$$

where $\alpha_{J}(e)=\ell_{R}\left(R / J^{[q]}\right)-e(J) q$ is a periodic function of $e$.
Example 3. Let $R=k[[X, Y]] /\left(X^{5}-Y^{5}\right)$, where $k$ is a field of prime characteristic $p \equiv$ $\pm 2(\bmod 5)$. Let $\mathfrak{m}$ be the maximal ideal of $R$ and $I=(x)$. Put $q=p^{e}$, for some $e \in \mathbb{N}$. Using Theorem 2, we get

$$
\begin{aligned}
\ell_{R}\left(\frac{\mathcal{R}(I)}{(\mathfrak{m}, I t)^{[q]}}\right) & =e(\mathfrak{m}) q^{2}+\alpha_{\mathfrak{m}}(e) q \\
& =5 q^{2}+ \begin{cases}-4 q & \text { if } e \text { is even } \\
-6 q & \text { if } e \text { is odd }\end{cases}
\end{aligned}
$$

## Generalized HK-FUNCTION

(A. Conca) For $s \in \mathbb{N}$, let $I^{[s]}=\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)$ where $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a fixed set of generators of $I$. The generalized Hilbert-Kunz function is defined as

$$
H K_{R, I}(s):=\ell_{R}\left(\frac{R}{I^{[s]}}\right)
$$

The generalized Hilbert-Kunz multiplicity is defined as $\lim H K_{R, I}(s) / s^{d}$, whenever the limit exists.

Theorem 4. Let $R$ be a Cohen-Macaulay local ring of dimension $d \geq 2$ and let $I$ be a parameter ideal. For a fixed $s \in \mathbb{N}, \ell_{R}\left(I^{[s]} / I^{[s]} I^{n}\right)$ equals

- $d \cdot H_{I}(n)$,
if $1 \leq n \leq s$,
- $\sum_{i=1}^{d-1}(-1)^{i+1}\binom{d}{i} H_{I}(n-(i-1) s)$,
if $s+1 \leq n \leq(d-1) s-1$,
- $H_{I}(n+s)-s^{d} e(I)$,
if $n \geq(d-1) s$.
Theorem 5. Let $R$ be a Cohen-Macaulay local ring of dimension $d \geq 2$. Let $I$ be a parameter ideal of $R$. Let $s \in \mathbb{N}$. Then

$$
\ell_{R}\left(\frac{\mathcal{R}(I)}{(I, I t)^{[s]}}\right)
$$

is a polynomial in $s$, for all $s \geq d$. Moreover, the generalized Hilbert-Kunz multiplicity $e_{H K}((I, I t) \mathcal{R}(I))=c(d) \cdot e(I)$.

Example 6. Let $R=k[[X, Y, Z]] /\left(X Y-Z^{n}\right)$, for some positive integer $n \geq 2$ and let $I$ be a parameter ideal of $R$. Then for $s \geq 2$,

$$
\ell_{R}\left(\frac{\mathcal{R}(I)}{(I, I t)^{[s]}}\right)=e(I)\left[\frac{4}{3} s^{3}-\frac{1}{3} s\right]
$$

Joint work with Arindam Banerjee and Jugal K.
Verma

## STANLEY-REISNER RINGS

Let $S=k\left[x_{1}, \ldots, x_{r}\right]$ be a polynomial ring in $r$ variables over a field $k$ and let $\mathfrak{m}$ be the maximal homogeneous ideal of $S$. Let $P_{1}, \ldots, P_{\alpha}$, for $\alpha \geq 2$, be distinct $S$-ideals generated by subsets of $\left\{x_{1}, \ldots, x_{r}\right\}$. Let $I=\cap_{i=1}^{\alpha} P_{i}$ and $R=S / I$. Suppose $\mathfrak{n}=\mathfrak{m} / I$ denotes the maximal homogeneous ideal of $R$ and $\operatorname{dim}(R)=d$.

Theorem 7. Set $\delta=\max \left\{\left|a_{i}(R)\right|: a_{i}(R) \neq\right.$ $-\infty\}$. Then for $s>\delta$,

$$
\ell\left(\frac{\mathcal{R}(\mathfrak{n})}{(\mathfrak{n}, \mathfrak{n} t)^{[s]}}\right)
$$

is a polynomial in $s$ of degree $d+1$.

## EXAMPLES

Example 8. Let $\Delta$ be the simplicial complex


Then $R=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(\left(x_{1}\right) \cap\left(x_{3}, x_{4}\right)\right)$ is the Stanley-Reisner ring of $\Delta$, with $f$-vector $f(\Delta)=(1,4,4,1)$ and $h$-vector $h(\Delta)=$ $(1,1,-1,0)$. For all $s>3$,

$$
\ell\left(\frac{\mathcal{R}(\mathfrak{n})}{(\mathfrak{n}, \mathfrak{n} t)^{[s]}}\right)=\frac{13}{8} s^{4}+\frac{13}{12} s^{3}-\frac{9}{8} s^{2}-\frac{7}{12} s
$$

Example 9 (Triangulation of real projective plane). Let $\Delta$ be the triangulation of the real projective plane. Let $R$ be the corresponding Stanley-Reisner ring of $\Delta$. The $f$-vector of $R$ is $f(\Delta)=(1,6,15,10)$ and $h$-vector of $R$ is $h(\Delta)=(1,3,6,0)$. For $s \geq 1$,

$$
\begin{gathered}
\ell\left(\frac{\mathcal{R}(\mathfrak{n})}{(\mathfrak{n}, \mathfrak{n} t)^{[s]}}\right)= \\
390\binom{s+3}{4}-720\binom{s+2}{3}+372\binom{s+1}{2}-41 s .
\end{gathered}
$$

Example 10. Let $\Delta$ be a complete bipartite $\operatorname{graph} K_{3,4}$. Let $S=k\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, y_{4}\right]$.


The edge ideal of $K_{3,4}$ is the ideal $I=\left(x_{i} y_{j} \mid\right.$ $1 \leq i \leq 3,1 \leq j \leq 4)$. Let $R=S / I$. For all $s>4$,
$\ell\left(\frac{\mathcal{R}(\mathfrak{n})}{(\mathfrak{n}, \mathfrak{n} t)^{[s]}}\right)=\frac{61}{30} s^{5}+\frac{19}{24} s^{4}-\frac{1}{12} s^{3}-\frac{7}{24} s^{2}-\frac{9}{20} s-1$.

## References

1. Aldo Conca. Hilbert-Kunz function of monomial ideals and binomial hypersurfaces. Manuscripta Math., 90(3):287300, 1996.
2. Kazufumi Eto and Ken-ichi Yoshida. Notes on HilbertKunz multiplicity of Rees algebras. Comm. Algebra, 31(12):5943-5976, 2003.
3. Paul Monsky. The Hilbert-Kunz function. Math. Ann., 263(1):43-49, 1983.
