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Setup and program

Given a finitely generated field extension K{k of
transcendence degree d ě 1 (with k algebraically
closed field), our goal is to study the bira-
tional geometry of K{k (i.e., the collection of all
varieties defined over k and having function field K)
using the theory of valuations. More specif-
ically we focus on the following set, known as the
Zariski-Riemann space of K{k:
ZRpK |kq “

!

V valuation ring
ˇ

ˇ

ˇ k Ď V, Frac`V
¯

“ K
(

.

We consider ZRpK |kq as a topological space
equipped with the Zariski topology, having as
basic open subsets the sets of the form

upf1, . . . , fsq :“
!

V
ˇ

ˇ

ˇ f1, . . . , fs P V
)

,

where the fi range in K.

A brief historic note

In the case of curves (d “ 1) ZRpK |kq corresponds
to the unique nonsingular projective model of K{k
(see [1, Chapter I.6]).

In the case d ą 1, Zariski-Riemann spaces were in-
troduced in [3] by Oscar Zariski who used them to
define and study local uniformization in characteris-
tic 0. He proved that the space ZRpK |kq is compact
and used it to solve the resolution of singularities
problem for surfaces in [2] and for 3-folds in [4].
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From algebra to geometry

The connection between valuation theory and the
geometric world of schemes is classically achieved
by using the following steps:
1 Define a sheaf O on ZRpK |kq by the rule
OpUq :“ Ş

V PU V , for any non-empty open
U Ď ZRpK |kq.

2 For any such set obtain a normal affine scheme
schpUq :“ SpecpOpUqq.

3 Restrict the attention to those basic open subsets
U of ZRpK |kq such that FracpOpUq

˘

“ K, called
charts.

4 For any inclusion of charts U Ď V, obtain a
canonical birational morphism schpUq Ñ schpVq

of affine normal k-varieties.

Finding the right categories

Stemming from these classical thoughts, we try to
utilize the same framework to construct more gen-
eral varieties. We define an atlas U to be a finite col-
lection of charts which forms a covering of ZRpK |kq
and such that the birational morphisms induced by
each inclusion U XV Ď U (for U,V P U) is an open
immersion. On one hand, on the algebraic side, we
take the category ATLASpK |kq whose objects are at-
lases of ZRpK |kq and whose morphisms are given by
some specific kind of refinements.
On the other hand, on the geometric side, we con-
sider the category PROPNORMpK |kq of all proper, nor-
mal k-varieties with function field K together with
birational morphisms.

Main Theorem

Let K{k be a finitely generated field extension such that k is algebraically closed. Then there is an
equivalence of categories

sch : ATLASpK |kq Ñ PROPNORMpK |kq.

Sketch of the proof

‚Given an atlas U “ tU1, . . . ,Unu we take the affine
normal schemes schpUiq, for i “ 1, . . . , n.
‚Thanks to the property defining atlases, we can
glue these schemes together to obtain a normal
k-variety schpUq.
‚This variety is proper because of the valuative
criterion for properness (in the form of [1, II. Ex
4.5(c)]).

By tweaking the way we define morphisms in the
category ATLASpK |kq it is possible to work more gen-
erally with proper, normal k-varieties and birational
maps (rather than birational morphisms).

This theorem exhorts a plan aimed at regaining the
main constructions of birational geometry through
the lens of valuation rings and atlases.

Projective varieties

Example: Let K “ kpx, yq and consider the atlas
S :“

!

S1 “ upx, yq,S2 “ u
´1

y,
x
y

¯

,S3 “ u
´1

x, y
x

¯)

.

Using the identifications x “ X{Z, y “ Y {Z, these
three charts correspond to the standard open cover-
ing of P2

k “ Proj “X, Y, Z
‰ and therefore schpSq “ P2

k.
More generally, if K “ kpx1, . . . , xdq, we set x0 :“ 1
and we consider the atlas

Sd :“
!

Si “ u
´

x0
xi

, . . . , xd

xi

¯ ˇ

ˇ

ˇ i “ 0, . . . , d
)

,

then schpSdq “ Pd
k. We call Sd the standard atlas

defined by the tuple x “ px1, . . . , xdq.

It is possible to prove that for an arbitrary field ex-
tension K{k, any projective, normal k-variety hav-
ing function field K can be obtained using a stan-
dard atlas defined by a transcendence basis of K{k.

Ideal Sheaves and Blow-Ups

We define an ideal sheaf I on ZRpK |kq by giving
an ideal IpUq of OpUq, for each chart U. Under mild
conditions, I induces a sheaf of ideals I |X on any
X P ob `

PROPNORMpK |kq
˘. Moreover I is compatible

with pullbacks in the sense that if f : Y Ñ X is a
birational morphism, then I |Y “ f´1I |X.
Conversely, given an ideal sheaf I on a proper nor-
mal k-variety X with function field K, we can define
a sheaf of ideals qI on ZRpK |kq such that qI|X “ I.

Example: Given a finite tuple f of elements of
K, we define the sheaf of ideals Id f on ZRpK |kq by
setting Id f pUq “ fOpUq X OpUq, for any chart U.

It turns out that any sheaf of ideals on a projective,
normal variety X can be realized as Id f |X, for some
finite tuple f in K.

Using this description of ideal sheaves, we are able
to explicitly find the atlas which defines the blow-up
of a projective, normal variety X at a proper closed
subscheme.

Quasi-coherent sheaves of modules

We define a sheaf of modules M on ZRpK |kq
by giving a OpUq-module MpUq, for each chart
U. As in the case of ideals, M induces a quasi-
coherent sheaf of modules M|X on any X P

ob `

PROPNORMpK |kq
˘ which is compatible with pull-

backs and any OX-module M gives rise to a sheaf
of modules }M on ZRpK |kq such that }M|X “ M.
Additionally M|X is compatible with all the tensor
operations on sheaves.

Questions:
‚What is the sheaf on ZRpK |kq inducing the
canonical module (at least on smooth varieties)?
‚Can we determine classical birational invariants
of a variety (like the geometric genus or the
plurigenera) by examining the atlas that defines
it?
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