Birational Geometry through Zariski-Riemann spaces

Setup and program

Given a finitely generated field extension K/k of transcendence degree $d \ge 1$ (with k algebraically closed field), our goal is to study the birational geometry of K/k (i.e., the collection of all varieties defined over k and having function field K) using the theory of valuations. More specifically we focus on the following set, known as the **Zariski-Riemann space of** K/k:

 $\mathfrak{ZR}(K|k) = \{ V \text{ valuation ring } | k \subseteq V, \text{ Frac}(V) = K \}.$ We consider $\mathfrak{ZR}(K|k)$ as a topological space equipped with the **Zariski topology**, having as basic open subsets the sets of the form

$$\mathfrak{u}(f_1,\ldots,f_s) := \{ V \mid f_1,\ldots,f_s \in V \},\$$

where the f_i range in K.

A brief historic note

In the case of curves $(d = 1) \Im \Re(K|k)$ corresponds to the unique nonsingular projective model of K/k(see [1, Chapter I.6]).

In the case d > 1, Zariski-Riemann spaces were introduced in [3] by Oscar Zariski who used them to define and study local uniformization in characteristic 0. He proved that the space $\mathfrak{ZR}(K|k)$ is compact and used it to solve the resolution of singularities problem for surfaces in [2] and for 3-folds in [4].

References

- [1] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, 52. New York: Springer-Verlag, 1997.
- [2] Oscar Zariski. "A simplified proof for the resolution of singularities of an algebraic surface". In: Annals of Mathe*matics* 43.3 (1942), pp. 583–593.
- [3] Oscar Zariski. "Local uniformization of algebraic varieties". In: Annals of Mathematics 41.4 (1940), pp. 852–896.

[4] Oscar Zariski. "The compactness of the Riemann manifold of an abstract field of algebraic functions". In: Bulletin of the American Mathematical Society 50.10 (1944), pp. 683–691.

Giovan Battista Pignatti Morano di Custoza (joint with Hans Schoutens)

The Graduate Center, City University of New York - Email: gpignattimoranodicus@gradcenter.cuny.edu

From algebra to geometry

The connection between valuation theory and the geometric world of schemes is classically achieved by using the following steps:	Ste ut: era
 Define a sheaf O on 3ℜ(K k) by the rule O(𝔅) := ∩_{V∈𝔅} V, for any non-empty open 𝔅 ⊆ 3ℜ(K k). For any such set obtain a normal affine scheme sch(𝔅) := Spec(O(𝔅)). Restrict the attention to those basic open subsets 𝔅 of 3ℜ(K k) such that Free(O(𝔅)) = K called 	lec an eac im tal las sol
a of $\mathfrak{Gr}(\mathcal{H} k)$ such that $\operatorname{Prac}(\mathfrak{C}(\mathfrak{A})) = \mathcal{H}$, called charts . ④ For any inclusion of charts $\mathfrak{U} \subseteq \mathfrak{V}$, obtain a canonical birational morphism $\operatorname{\underline{sch}}(\mathfrak{U}) \to \operatorname{\underline{sch}}(\mathfrak{V})$ of affine normal <i>k</i> -varieties.	Or sic ma bir

Main Theorem

Let K/k be a finitely generated field extension such that k is algebraically closed. Then there is an equivalence of categories

<u>sch</u>: <u>ATLAS</u>($K|k) \rightarrow \underline{PROPNORM}(K|k)$.

Sketch of the proof

• Given an atlas $\mathcal{U} = \{\mathfrak{U}_1, \ldots, \mathfrak{U}_n\}$ we take the affine normal schemes $\underline{\mathrm{sch}}(\mathfrak{U}_i)$, for $i = 1, \ldots, n$.	$\mathbf{E}_{\mathbf{C}}$
 Thanks to the property defining atlases, we can glue these schemes together to obtain a normal k-variety <u>sch(U)</u>. This variety is proper because of the valuative criterion for properness (in the form of [1, II. Ex 4.5(c)]). 	Us th ing M
By tweaking the way we define morphisms in the category $\underline{\text{ATLAS}}(K k)$ it is possible to work more generally with proper, normal k-varieties and birational maps (rather than birational morphisms).	th de It te
This theorem exhorts a plan aimed at regaining the main constructions of birational geometry through the lens of valuation rings and atlases.	ing da

Finding the right categories

temming from these classical thoughts, we try to tilize the same framework to construct more genal varieties. We define an **atlas** \mathcal{U} to be a finite colection of charts which forms a covering of $\mathfrak{ZR}(K|k)$ nd such that the birational morphisms induced by ach inclusion $\mathfrak{U} \cap \mathfrak{V} \subseteq \mathfrak{U}$ (for $\mathfrak{U}, \mathfrak{V} \in \mathfrak{U}$) is an open mersion. On one hand, on the algebraic side, we ake the category $\underline{ATLAS}(K|k)$ whose objects are atuses of $\mathfrak{ZR}(K|k)$ and whose morphisms are given by me specific kind of refinements.

In the other hand, on the geometric side, we conder the category <u>**PROPNORM**</u>(K|k) of all proper, noral k-varieties with function field K together with rational morphisms.

Projective varieties

Example: Let K = k(x, y) and consider the atlas $\mathcal{S} := \left\{ \mathfrak{S}_1 = \mathfrak{u}(x, y), \mathfrak{S}_2 = \mathfrak{u}\left(\frac{1}{y}, \frac{x}{y}\right), \mathfrak{S}_3 = \mathfrak{u}\left(\frac{1}{x}, \frac{y}{x}\right) \right\}.$ Using the identifications x = X/Z, y = Y/Z, these nree charts correspond to the standard open coverig of $\mathbb{P}_k^2 = \operatorname{Proj}[X, Y, Z]$ and therefore $\underline{\operatorname{sch}}(\mathcal{S}) = \mathbb{P}_k^2$. fore generally, if $K = k(x_1, \ldots, x_d)$, we set $x_0 := 1$ nd we consider the atlas

 $\mathcal{S}_d := \left\{ \mathfrak{S}_i = \mathfrak{u}\left(\frac{x_0}{x_i}, \dots, \frac{x_d}{x_i}\right) \mid i = 0, \dots, d \right\},$

hen $\underline{\operatorname{sch}}(\mathfrak{S}_d) = \mathbb{P}_k^d$. We call \mathfrak{S}_d the standard atlas efined by the tuple $\mathbf{x} = (x_1, \ldots, x_d)$.

is possible to prove that for an arbitrary field exension K/k, any projective, normal k-variety havig function field K can be obtained using a stanard atlas defined by a transcendence basis of K/k.

We define an **ideal sheaf** \mathcal{I} on $\mathfrak{ZR}(K|k)$ by giving an ideal $\mathcal{I}(\mathfrak{U})$ of $\mathcal{O}(\mathfrak{U})$, for each chart \mathfrak{U} . Under mild conditions, \mathcal{I} induces a sheaf of ideals $\mathcal{I}|_X$ on any $X \in \mathrm{ob}\left(\underline{\mathsf{PROPNORM}}(K|k)\right)$. Moreover \mathcal{I} is compatible with pullbacks in the sense that if $f: Y \to X$ is a birational morphism, then $\mathcal{I}|_Y = f^{-1}\mathcal{I}|_X$. Conversely, given an ideal sheaf \Im on a proper normal k-variety X with function field K, we can define a sheaf of ideals \mathfrak{J} on $\mathfrak{ZR}(K|k)$ such that $\mathfrak{J}|_X = \mathfrak{I}$.

Example: Given a finite tuple **f** of elements of K, we define the sheaf of ideals $Id_{\mathbf{f}}$ on $\mathfrak{ZR}(K|k)$ by setting $Id_{\mathbf{f}}(\mathfrak{U}) = \overline{\mathbf{f}\mathcal{O}(\mathfrak{U})} \cap \mathcal{O}(\mathfrak{U})$, for any chart \mathfrak{U} .

It turns out that any sheaf of ideals on a projective, normal variety X can be realized as $Id_{\mathbf{f}|X}$, for some finite tuple \mathbf{f} in K.

Using this description of ideal sheaves, we are able to explicitly find the atlas which defines the blow-up of a projective, normal variety X at a proper closed subscheme.

Quasi-coherent sheaves of modules

We define a sheaf of modules \mathcal{M} on $\mathfrak{ZR}(K|k)$ by giving a $\mathcal{O}(\mathfrak{U})$ -module $\mathcal{M}(\mathfrak{U})$, for each chart \mathfrak{U} . As in the case of ideals, \mathcal{M} induces a quasicoherent sheaf of modules $\mathcal{M}_{|X}$ on any $X \in$ ob (<u>**PROPNORM**</u>(K|k)) which is compatible with pullbacks and any \mathcal{O}_X -module \mathfrak{M} gives rise to a sheaf of modules \mathfrak{M} on $\mathfrak{ZR}(K|k)$ such that $\mathfrak{M}|_X = \mathfrak{M}$.

Additionally $\mathcal{M}_{|X}$ is compatible with all the tensor operations on sheaves.

Questions:

- it?

Ideal Sheaves and Blow-Ups

• What is the sheaf on $\mathfrak{ZR}(K|k)$ inducing the canonical module (at least on smooth varieties)? • Can we determine classical birational invariants of a variety (like the geometric genus or the plurigenera) by examining the atlas that defines