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Abstract

This mini-course will be an introduction to stability conditions on derived categories, wall-crossing
and its applications to binational geometry of moduli spaces of sheaves and enumerative geometry on
Calabi–Yau 3-folds (see details below). The schedule is as follows:
Lecture 1

• Motivation
• Basic notions: derived categories, triangulated categories, and Bridgeland’s notion of stability

conditions on triangulated categories.
Lecture 2

• Further discussion on stability conditions. I will give some examples of spaces of stability conditions.
Lectures 3–5

• Applications to the birational geometry of moduli spaces of sheaves: Every Bridgeland stability
condition specifies a moduli space of Bridgeland-stable objects. I will explain the relation between
wall-crossing for Bridgeland-stability and the minimal model program for the moduli space and
discuss the result of Bayer–Macŕı which shows that every minimal model of the moduli space of
stable sheaves on a K3 surface appears as a moduli space of Bridgeland-stable objects on the K3
surface.

• Applications to enumerative geometry on Calabi–Yau threefolds: I will introduce Donaldson–Thomas
(DT for short) invariants and Pandharipande–Thomas (PT for short) invariants of Calabi–Yau
threefolds. I will explain Toda’s proof of DT/PT correspondence by studying wall-crossing phenomena
in the derived category.

I will focus on the second application and give more details.
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1 History and Motivation
Lecture 1

The goal of this course is to define stability conditions on triangulated categories, and describe applications
of these stability conditions. These stability conditions, due to Bridgeland, have interesting applications in
• Birational geometry, e.g., that of Mg,n and moduli spaces of stable sheaves on surfaces; and
• Enumerative geometry, where wall-crossing relates seemingly very different invariants.
The history of stability conditions is as follows. Stability conditions were first introduced classically on

abelian categories. Abelian categories give rise to derived categories, which are examples of triangulated
categories:

abelian category =⇒ derived category ⊆ triangulated category

We can then ask if there is some analogous notion of stability conditions on the triangulated side. These
stability conditions on triangulated categories were introduced by T. Bridgeland, inspired by ideas of Douglas.

Douglas was a physicist, who was invited to speak at the 2002 ICM [Dou02]. His ideas were then formalized
into something purely mathematical by Bridgeland in [Bri07]. The preprint first came out in 2002, and was
not published until 2007, showing that in some sense his ideas were ahead of his time. The paper now has
over 400 citations, showing how important his ideas have become.

We now elaborate on how stability conditions are applied to birational geometry. Let X be a scheme
(or if you prefer, a complex manifold or variety). You can then consider the category Coh(X) of coherent
sheaves on X. This is an abelian category, and has an associated derived category D(Coh(X)). To define a
meaningful moduli space for objects in this category, we need to specify a subclass of objects, consisting of
what we will call stable sheaves. This notion of stability depends on
• An ample divisor H on X; and
• Some cohomological data.

The easiest example of such a construction is the moduli space of stable curves over a curve C. The classical
construction is for the abelian category Coh(X), but the version for the derived category has the advantage
that changing the stability condition gives rise to interesting changes in the associated moduli spaces. These
different spaces end up being connected by birational transformations, and so changing the stability condition
gives rise to different birational models. In particular, for moduli spaces of stable sheaves on K3’s, every
birational model arises in this way.

2 Basic Notions and Examples

2.1 Abelian categories

We begin with the definition of an abelian category.

Definition 2.1. An abelian category A is a category satisfying the following properties:
1. For all objects X,Y ∈ ObjA, the set HomA(X,Y ) is an abelian group;
2. A has a zero object, i.e., an object 0 ∈ ObjA such that Hom(0, X) = 0 = Hom(X, 0);
3. Finite products

∏
Gi and coproducts

⊕
Gi exist and are isomorphic, where we recall that the universal

property for the product of two objects is

Y

X1 E X2

and the coproduct has the same universal property with arrows reversed;
4. Kernels and cokernels exist;
5. Monomorphisms and epimorphisms are normal, i.e., every monomorphism (resp. epimorphism) is the

kernel (resp. cokernel) of a morphism, where we recall that a morphism f : Y → Z is a monomorphism
if there exists a composition

X
g−→ Y

f−→ Z

such that f ◦ g = 0, then g = 0, and epimorphisms satisfy the same property with arrows reversed.
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Examples 2.2. The following categories are abelian:
1. The category of right- (or left-) R-modules, for R a ring.
2. The category of (quasi-)coherent sheaves on a scheme X.
3. The category of representations of a quiver Q, which we define below.

Definition 2.3. A quiver Q = (Q0, Q1) is a directed graph with vertices Q0 and edges Q1. A representation
V = (V0, V1) of Q is a set V0 of vector spaces assigned to each vertex in Q0, and a set V1 of linear maps for
each edge in Q1.

Examples 2.4. We give some elementary examples of quivers and their representations.
1. Let V0, V1 be complex vector spaces, and let φi ∈ HomC(V0, V1). These can be assigned to the following

quiver to give a representation:

V0

0

V1

1

φ1

φ2

2. Quivers are allowed to have cycles, and so we can add two more arrows to our quiver and associate a
representation as below:

X0

Y0

X1

Y1

where we can impose conditions on these morphisms, e.g., Y1X0 = X1Y0 and X0Y1 = Y0X1.
3. Quivers are also allowed to have loops:

Definition 2.5. A morphism of quiver representations is a set of linear maps ψi between vector spaces
assigned to vertices, commuting with the linear maps assigned to edges, e.g., maps ψi such that the diagram

V0 V1
φ1

φ2

V ′
0 V ′

1

φ′
1

φ′
2

ψ0 ψ1

commutes.

2.2 Stability conditions on abelian categories

We can now put a stability condition on an abelian category A.

Example 2.6. Let C be a smooth complex projective curve (i.e., a Riemann surface), and consider the
category Coh(C) of coherent sheaves on C. Let E ∈ Coh(C) be a vector bundle; E has a rank rk(E) and a
degree deg(E). The slope of E is defined by

µ(E) =
deg(E)

rk(E)
(µ(E) = +∞ if E is torsion)

E is called semistable (resp. stable) if for all subsheaves F ↪→ E (resp. proper subsheaves), we have that
µ(F ) ≤ µ(E) (resp. µ(F ) < µ(E)). Note that we can define the slope µ(F ) for arbitrary coherent sheaves:
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the rank is equal to the rank of Fη at the generic point of C, and the degree is given by forcing compatibility
with Riemann–Roch:

deg(F ) = χ(F )− rkF · (1− g).

Recall that one of our motivations for stability conditions was to define moduli spaces of vector bundles
on the curve C. A näıve strategy would be just to take all coherent sheaves on C, but this gives a moduli
space that is not of finite type. Even if we wanted a moduli space for all rank 2 degree 0 vector bundles,
it would still not be of finite type: for C = P1, all vector bundles O(−n)⊕O(n) for n ≥ 0 appear in this
family, but there is no finite type scheme that can parametrize all of these.

Luckily, this vector bundle is not semistable, and so restricting to the class of semistable sheaves does, in
fact, give a good moduli space:

Theorem 2.7. There exists a projective coarse moduli space UC(r, d) of semistable sheaves on C of rank r
and degree d.

The construction of this moduli space uses GIT.

Examples 2.8.
1. UC(1, 0) = Jac(C);
2. If C = P1, then the moduli space of vector bundles with fixed first Chern class is a single point;
3. [Atiyah] If C is an elliptic curve, then UC(r, d) ∼= Symm(C), where m = gcd(r, d).

The slope function defined above satisfies the following key property:

Property 2.9 (See-saw). Given a short exact sequence

0 −→ A −→ E −→ B −→ 0,

if µ(A) ≤ µ(E) (resp. <,≥, >), then µ(E) ≤ µ(B) (resp. <,≥, >).

The key idea behind the proof is what physicists call a “central charge” function on the Grothendieck
group K(A) of the abelian category A. To define the central charge, we first define K(A):

Definition 2.10. Let A be an abelian category. Then, the Grothendieck group K(A) of A is the abelian
group generated by all isomorphism classes of objects in A, modded out by relations of the form [A]+[C] = [B]
for every short exact sequence 0→ A→ B → C → 0.

We can now define what physicists call the “central charge”:

Definition 2.11. The central charge of a coherent sheaf E is defined as

Z(E) = −deg(E) + rk(E)i.

Note that if 0→ A→ E → B → 0 is a short exact sequence, then
• rk(E) = rk(A) + rk(B);
• deg(E) = deg(A) + deg(B);

and so Z(E) = Z(A) + Z(B). This means Z gives a homomorphism Z : K(A)→ C from the Grothendieck
group K(A) to the complex numbers.

Proof. We first claim that the image of Z lies in the semi-upper half plane, that is, the region

H := R<0 ∪ {z ∈ C | Im z > 0} ⊆ C,

which we can also picture visually as the region below:
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If E is a torsion sheaf, then rk(E) = 0 and deg(E) > 0, since deg(E) = H0(E). If E is a vector bundle, then
rk(E) > 0 and deg(E) can be arbitrary, so the image of Z is indeed contained in the semi-upper half plane.

Now if µ(A) ≤ µ(E), we get the following diagram of vectors:

Z(A)

Z(B)

Z(E)

where the slope of the vector Z(A) is −1/µ(A), and that of Z(B) is −1/µ(B). Since all three vectors lie in
H, we must have that if µ(A) ≤ µ(E), then µ(E) ≤ µ(B), and similarly for the other inequalities.

Note that the proof only relied on the fact that the image of the central charge Z lied in H.
One nice thing about semistable sheaves is that all coherent sheaves can be built up from semistable ones

using the following filtration result:

Proposition 2.12 (Harder–Narasimhan filtration). For any coherent sheaf E on C, there exists a (unique)
filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that the successive quotients Ei/Ei−1 are semistable of slope µi, where µ1 > µ2 > · · · > µn.

Example 2.13. On P1, a vector bundle E splits as
⊕∞

i=−∞O(i)⊕ni , e.g., O(1)⊕O(2)⊕O(3). We then get
a filtration

0 O(3) O(3)⊕O(2) O(1)⊕O(2)⊕O(3)
O(3) O(2) O(1)
µ = 3 µ = 2 µ = 1

where we list the quotients Ei/Ei−1 below the inclusion maps, together with their slopes.

Example 2.14. The vector bundle O(1)⊕O(1) on P1 is an example of a decomposable bundle which is already
semistable; in general, direct sums of isomorphic line bundles are semistable. Thus, the Harder–Narasimhan
filtration for O(1)⊕3 ⊕O(2)⊕2 is given by

0 −→ O(2)⊕2 −→ O(1)⊕3 ⊕O(2)⊕2.

We now define stability for arbitrary abelian categories.

Definition 2.15. Let A be an abelian category and let Z : K(A)→ C be a homomorphism such that for
0 6= E ∈ A, we have

Z(E) ∈ H = {z = meiπφ | m > 0, φ ∈ (0, 1]},

where H is the semi-upper half plane from before:

Then, we define the phase

φ(E) =
arg(Z(E))

π
,

so that if Z(E) = m(E)eπiφ, then φ(E) is exactly this number φ. We say that E ∈ A is semistable (resp.
stable) if for all subobjects 0→ F → E (resp. proper subobjects 0→ F → E), we have φ(F ) ≤ φ(E) (resp.
φ(F ) < φ(E)).
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Even in this setting, we still have the analogue of the Harder–Narasimhan filtration:

Proposition 2.16 (Harder–Narasimhan filtration). For any object E ∈ A, there exists a (unique) filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that the successive quotients Ei/Ei−1 are semistable of phase φi, where φ1 > φ2 > · · · > φn.

2.3 Derived categories

We now define derived categories D(A),D+(A),D−(A),Db(A) associated to an abelian category A.

Step 1. Define the category Ch(A) of chain complexes

· · · −→ C−2 −→ C−1 −→ C0 −→ C1 −→ · · ·

where Ci ∈ A and the composition of two adjacent morphisms is 0. Morphisms in Ch(A) are given by
commutative diagrams of the form

· · · C−2 C−1 C0 C1 · · ·

· · · B−2 B−1 B0 B1 · · ·

Step 2. Define the homotopy category K(A) to be the category consisting of the same objects as Ch(A), but
whose morphisms are the morphisms in Ch(A) quotiented out by the following equivalence relation. Consider
the following diagram depicting two morphisms f, g : C• → B•:

· · · C0 C1 C2 · · ·

· · · B0 B1 B2 · · ·

i0

g0f0

h1

i1

g1f1 g2f2

h2

j0 j1

f and g are called homotopy equivalent with homotopy h = (hi) if there exists a sequence of morphisms
hi : Ci → Bi−1 such that

fi − gi = ji−1hi + hi+1ii

for all i. Note that this implies f∗ = g∗ as maps Hi(C•)→ Hi(B•).

Step 3. The derived category D(A) has the same objects as K(A) or Ch(A), but morphisms X
f→ Y are

given by roofs

X ′

X Y
qis

h g

where g, h are morphisms in K(A), and “qis” denotes a quasi-isomorphism, that is, a morphism of chain
complexes that induces isomorphisms on cohomology. We compose morphisms by constructing a diagram

X ′′

X ′ Y ′

X Y Z

qis

qis

h g

qis

Note that you need K(A) because otherwise X ′′ may not exist such that X ′′ → X ′ is a quasi-isomorphism.
See [GM03, Thm. III.4.4].

In this way, all quasi-isomorphisms have been “inverted” in D(A).
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Definition 2.17. We obtain the other variants of the derived category by starting with different subcategories
of Ch(A) with different boundedness properties.

D+(A) starts with Ch+(A), the chain complex of bounded below chain complexes

· · · −→ 0 −→ 0 −→ · · · −→ C−1 −→ C0 −→ C1 −→ · · ·

D−(A) starts with Ch−(A), the chain complex of bounded above chain complexes

· · · −→ C−1 −→ C0 −→ C1 −→ · · · −→ 0 −→ 0 −→ · · ·

Db(A) starts with Chb(A), the chain complex of bounded chain complexes

· · · −→ 0 −→ 0 −→ · · · −→ C−1 −→ C0 −→ C1 −→ · · · −→ 0 −→ 0 −→ · · ·
Lecture 2

Note that we have cohomology functors Hn : Ch(A) → A defined by Hi(E•) = ker di/ im di−1. These
descend to functors on K(A) and D(A):

Ch(A) K(A) D(A)

A
Hn

Hn

Hn

2.4 Stability conditions for quiver representations

We now define more examples of stability conditions. Consider an abelian category A such that the
Grothendieck group K(A) is freely generated by some isomorphism classes E1, . . . , En. Then, choosing
arbitrary z1, . . . , zn ∈ H, we can define a central charge Z : K(A)→ H by having Z(Ei) = zi, and thereby
define a stability condition on A. This is how we will define stability conditions for quiver representations.

Fix a quiver Q with vertices Q0 and edges Q1. Recall that a quiver representation V = (V0, V1) is an
assignment of vector spaces in a set V0 to each vertex, and linear maps in a set V1 to each edge; for example

Wa

a

Wb

b

φ1

φ2

φ3

Quiver representations of a quiver Q form an abelian category RepQ. Assuming that Q has no loops or
oriented cycles, the Grothendieck group is freely generated as

K(RepQ) = 〈Si〉1≤i≤|Q0|,

where the Si are defined by having one copy of C assigned to the ith vertex, and having 0 assigned to every
other vertex.

Example 2.18. Consider the following quiver:

W1

1

W2

2

W3

3

The quiver representations Si are the following:

C 0 0 0 C 0 0 0 C

S1 S2 S3

Then, we choose z1, z2, z3 ∈ H, and define Z(Si) = zi, so that

Z : K(RepQ) −→ C

V 7−→ dim(W1)z1 + dim(W2)z2 + dim(W3)z3.

where Wi is the vector space assigned to the ith vertex.
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Example 2.19 (Kronecker quiver). Consider the Kronecker quiver

W0

0

W1

1

φ1

φ2

for which the quiver representations Si are the following:

C 0 0 C

S0 S1

As before, we can choose z0, z1 ∈ H to give a stability condition on RepQ, and ask what the stable
representations are. The answer depends on the choice of z0, z1:

Case 1. The phase of z1 is greater than that of z0:

z0

z1

Let V be a representation, in which case Z(V ) = dim(W0)z0 + dim(W1)z1. Then, there are three subcases:
1. Suppose dimW0 ≥ 1 and dimW1 ≥ 1. In this case, the subrepresentation V ′ given by

0 W1

has Z(V ′) = dim(W1)z1, which has a larger phase:

dim(W0)z0

dim(W1)z1
dim(W1)z1

Thus, V ′ destabilizes V , and so V is not stable.
2. Suppose dimW0 ≥ 1 and dimW1 = 0. Then, S0 is a destabilizing subrepresentation unless dimW0 = 1.
3. Suppose dimW0 = 0 and dimW1 ≥ 1. Then, S1 is a destabilizing subrepresentation unless dimW1 = 1.

We therefore see that the only stable representations are S0 and S1.

Case 2. The phase of z0 is greater than that of z1:

z1

z0

We will classify stable representations with dimension vector (1, 1), that is, representations V of the form

C C

φ1

φ2

Then, V is stable if and only if S0 does not exist as a subrepresentation. This is equivalent to saying
(φ1, φ2) 6= (0, 0), and so since for any scalar λ ∈ C∗, the maps (φ1, φ2) and (λφ1, λφ2) give rise to isomorphic
quiver representations, we see that isomorphism classes of stable representations with dimension vector (1, 1)
are parametrized by

{(φ1, φ2) ∈ C2 \ (0, 0)}
/

C∗
∼= P1.
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This gives an example of wall-crossing: changing the stability condition changes the moduli space of stable
representations with dimension vector (1, 1) from the empty set in Case 1, to P1 in Case 2.

Example 2.20 (Pn+1). We can generalize the previous example as follows. Consider the quiver Pn+1:

...n+ 1 edges

If the phase of z0 is greater than that of z1, then the same analysis as in Case 2 of Example 2.19 shows that
isomorphism classes of stable representations with dimension vector (1, 1) are parametrized by Pn.

For quivers with cycles, you can still define a central charge by

Z(V ) =

r∑
i=0

dim(Wi)zi

for, e.g., a quiver

W1

1

W2

2

W3

3

and still get a group homomorphism K(RepQ,R)→ C.

2.5 Triangulated categories

The derived category D(A) is an example of a triangulated category, which we will now define.

Definition 2.21. A category D is a triangulated category if it is an additive category (i.e., all Hom sets are
abelian groups) together with

1. an autoequivalence (i.e., an equivalence of categories D → D) denoted by X 7→ X[1] called the shift or
translation functor; and

2. a set of distinguished triangles
X −→ Y −→ Z −→ X[1]

satisfying the following axioms:

(a) X
id→ X → 0→ X[1] is distinguished;

(b) For any morphism u : X → Y , there exists a third object Z called the mapping cone of u such

that X
u→ Y → Z → X[1] is a triangle (the mapping cone is unique, but only up to non-unique

isomorphism);
(c) Any triangle isomorphic to a distinguished triangle is distinguished, where an isomorphism is a

commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X[1]

with the vertical morphisms being isomorphisms;
(d) If X

u→ Y
v→ Z

w→ X[1] is distinguished, then

Y
v−→ Z

w−→ X[1]
−u[1]−→ Y [1]

is also distinguished;
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(e) If we have a diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

it can be completed with a (non-unique) map Z → Z ′;

(f) [Octahedral axiom] Given morphisms A
f→ B

g→ C, then we can complete the commutative
triangle below with distinguished triangles A → B → D → A[1], A → C → E → A[1], and
B → C → F → B[1], so that D → E → F → D[1] is also distinguished, such that the diagram
below commutes:

D

B E
C

A F

g

f

g◦f

where squiggly arrows in a triple X → Y → Z  denotes that the triple forms a distinguished
triangle X → Y → Z → X[1].

We think of the octahedral axiom as the triangulated version of the fact that (C/A)/(B/A) ∼= C/B in
an abelian category.

To motivate the notion of a t-structure, we ask the following:

Question 2.22. Consider the category Db(A). Note that A is a subcategory of Db(A), by identifying A
with the subcategory of objects with only the degree 0 slot being nonzero. But given Db(A), how can we
recover the category A?

It turns out that we cannot recover A from Db(A) without a t-structure, a notion invented by Bĕılinson–
Bernstein–Deligne in [BBD82].

Definition 2.23. Let D be a triangulated category. Let (D≤0,D≥0) be a pair of saturated (i.e., closed under
isomorphism) full subcategories of D. We will denote D≥n = D≥0[−n] and D≤n = D≤0[−n]. Then, we say
(D≤0,D≥0) is a t-structure if the pair satisfies the following properties:

1. If X ∈ D≤0, and Y ∈ D≥1, then Hom(X,Y ) = 0;
2. D≤0 ⊆ D≤1 and D≥1 ⊆ D≥0.
3. For every X ∈ D, there exists a distinguished triangle

A X B A[1]

D≤0 D≥1

∈ ∈

This assignment is functorial; we denote τ≤0X to be the object A above, and τ≥1 to be the object B
above. τ≤0 and τ≥1 are called truncation functors.

Example 2.24. For D = D(A), recall that objects are chain complexes

E• := {E−1 E0 E1 E2 · · · }

E•[1] := {E0 E1 E2 E3 · · · }
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and the shift [1] shifts everything to the left as shown above. We then have a natural t-structure coming
from cohomology:

D≤0 = {X ∈ D(A) | Hi(X) = 0 ∀i > 0}
D≥0 = {X ∈ D(A) | Hi(X) = 0 ∀i < 0}

The truncation functors are given by

τ≤0 : D −→ D≤0

{X−2 → X−1 → X0 d→ X1 → X2 → · · · } 7−→ {X−2 → X−1 → X0 → ker d→ 0→ 0→ · · · }

τ≥1 : D −→ D≥1

{X−2 → X−1 → X0 d→ X1 → X2 → · · · } 7−→ {0→ 0→ X0/ ker d→ X1 → X2 → · · · }

and this gives a distinguished triangle

τ≤0X −→ X −→ τ≥1X −→ τ≤0X[1]

Definition 2.25. A# := D≤0 ∩ D≥0 is called the heart or core of the t-structure.

Proposition 2.26. A# is abelian.

Example 2.27. If D = D(A), and you choose the standard t-structure, then you can show that A# = A.
However, it is not true in general that for an arbitrary triangulated category D, we have D(A#) ∼= D, e.g., by
taking the t-structure (D, 0) on D.

Lecture 3
We can give an equivalent formulation of a t-structure that is bounded, that is

Definition 2.28. A t-structure on a triangulated category D is bounded if⋂
n

ObjD≤n =
⋂
n

ObjD≥n = {0}.

If our t-structure is bounded, then we can reformulate the information contained in the t-structure in
terms of the heart:

Definition 2.29. A heart of a bounded t-structure is a full additive subcategory A# ⊂ D such that
1. If k1 > k2, then Hom(A#[k1],A#[k2]) = 0;
2. For every nonzero object E in D, there exist integers k1 > k2 > · · · > kn and a sequence of exact

triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

where Ai ∈ A#[ki] for all i.

2.6 Tilting

Definition 2.30. Let A be an abelian category. A torsion pair (T ,F) is a pair of full additive subcategories
of A such that

1. Hom(T ,F) = 0;
2. For all E ∈ A, there exists a short exact sequence

0 −→ T −→ E −→ F −→ 0,

where T ∈ T and F ∈ F .
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T is the “torsion part” and F is the “free part.”

Examples 2.31.
1. Let A = Coh(X). Then, the pair (T ,F), where T is the category of torsion sheaves, and F is the

category of torsion-free sheaves, is a torsion pair.
2. Let A = Coh(C), for C a curve, and let µ ∈ R. Then, let A≥µ (resp. A<µ) be the subcategory consisting

of all objects E such that every factor in the Harder–Narasimhan filtration for E has slope ≥ µ (resp.
< µ). Recall that the Harder–Narasimhan filtration is a filtration of the form

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

and letting µi = µ(Ei/Ei−1), each factor Ei/Ei−1 is semistable with respect to µ with slope µi, and
µ1 > µ2 > · · · > µn. An arbitrary object E then fits in a short exact sequence

0 −→ Ei −→ E −→ E/Ei −→ 0

where i is the largest number such that µi ≥ µ. This shows that (A≥µ,A<µ) is a torsion pair. We
mention the following:

Fact 2.32. Hom(E,F ) = 0 if µ−(E) > µ+(F ), where µ− (resp. µ+) are the smallest (resp. largest)
slopes appearing in the Harder–Narasimhan filtration.

This motivates property (1) of t-structures in Definition 2.23.
3. Consider a quiver such that a vertex n is a sink, e.g.

V0 V1 Vn

V2

Let A = RepQ, let T be the subcategory of representations concentrated at vertex n, and let F be the
subcategory of representations with Vn = 0. Then, (T ,F) is a torsion pair, since the subobject

0 0 Vn

0

is in T with quotient in F .
In general, even if n is not a sink, we can still let T be the same subcategory as before consisting of
representations S⊕kn , where Sn is the simple one-dimensional representation concentrated at n, and
let F be the subcategory of representations V such that Hom(Sn, V ) = 0. More explicitly, these are
representations V satisfying ⋂

j such that ej
goes out of
vertex n

ker
(
Vn

φj−→ Vφj

)
= 0.

Proposition 2.33 (Tilting). Given a torsion pair (T ,F) on A, we can define a new heart for Db(A)

A# = {E ∈ Db(A) | H0(E) ∈ T , H−1(E) ∈ F , Hi(E) = 0 for i 6= 0,−1},

where H−1(X) := H0(X[−1]).

It is also possible to define tilting for an arbitrary triangulated category D with a t-structure with heart A#,
using truncation functors instead of cohomology functors.
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Remark 2.34. An object E ∈ ObjA# is a complex

0 −→ F
u−→ G −→ 0

where keru ∈ F and coku ∈ T , in which case you get an exact sequence

0 −→ keru −→ F
u−→ G −→ coku −→ 0,

i.e., E ∈ Ext2(T ,F) = Ext1(T ,F [1]). Here we use that if F,G are objects of A, then

HomDb(A)(F [p], G[q]) =

{
0 p > q

Extq−p(F,G) p ≤ q

We can visualize tilting as follows:

A[1] A[0] A[−1]

T [1] F [1] T [0] F [0] T [−1] F [−1]

A#[0] A#[−1]
Lecture 4

Example 2.35. Let X = P1, and let A = Coh(X). Let (T ,F) = (A≥0,A<0) to obtain the tilted heart A#.
We can also consider RepQ for the Kronecker quiver

Note that Coh(P1) and RepQ are very different abelian categories, since e.g., the latter category has Jordan–
Hölder filtrations. However, their derived categories are equivalent: there exists an equivalence of categories

ΦT : Db(Coh(P1))
∼−→ Db(RepQ),

defined by the tilting sheaf (in this case a bundle) T = O ⊕ O(1), which we will define below. Under
this equivalence, we have ΦT (A#) = RepQ. This shows both Coh(X) and RepQ exist as hearts of different
t-structures on D.

Definition 2.36. Let X be a smooth projective variety, for simplicity over C (this should work for any
algebraically closed field, maybe assuming the characteristic is zero). Then, a coherent sheaf T on X is a
tilting sheaf if

1. The tilting algebra A = EndOX
(T ) has finite global dimension, that is

sup {projective dimension of left A-module} <∞;

2. ExtkOX
(T, T ) = 0 for all k > 0;

3. T classically generates the derived category Db(CohX), that is, Db(CohX) can be obtained from T by
repeated iterations of taking cones, direct summands, shifts, etc..

Theorem 2.37 (Baer, Bondal). Let T be a tilting sheaf on X, and let A = EndOX
(T ) be the tilting algebra.

Then, the functors

F (−) := HomOX
(T,−) : Coh(X) −→ mod(Aop)

G(−) := −⊗A T : mod(Aop) −→ Coh(X)

induce equivalences of tirangulated categories

RF : Db(Coh(X)) −→ Db(mod(Aop))

RG : Db(mod(Aop)) −→ Db(Coh(X))

Example 2.38. In the previous example, the derived functor is

Db(Coh(X)) −→ Db(mod(End(O ⊕O(1)))) = Db(mod(CQ)) = Db(RepQ),

where elements of mod(CQ) can be thought of as paths in Q.

You can compute examples with more complicated varieties X and associated quivers Q; see [Cra07].
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2.7 Stability on triangulated categories

Definition 2.39. A slicing P of D is a collection of full additive subcategories P(φ) for φ ∈ R satisfying
1. P(φ+ 1) = P(φ)[1];
2. If φ1 > φ2, then Hom(P(φ1),P(φ2)) = 0;
3. If E is a nonzero object in D, then there is a sequence φ1 > φ2 > · · · > φn and a sequence of

distinguished triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

such that Ai ∈ P(φi) for all i.

Note this is a refinement of the definition of a heart, since we allow P(φi) to be indexed by real numbers, not
just integers.

Remarks 2.40.
1. Objects in P(φ) are called semistable of phase φ.
2. Define φ+P(E) = φ1 and φ−P(E) = φn. One can show that for A,B ∈ D, if φ−P(A) > φ+P(B), then

Hom(A,B) = 0. This generalizes the notion of slope from before.
3. If P(φ) = ∅ for φ /∈ Z, then slicing is the same as the notion of a bounded t-structure with heart P(0).

Otherwise, we define the heart as

A = P((0, 1]) = {E | φ+(E) ≤ 1, φ−(E) > 0}.

We can now almost define stability conditions for triangulated categories. We first need to define the
analogue of the Grothendieck group K(A) for triangulated categories:

Definition 2.41. Let D be a triangulated category. Then, the Grothendieck group K(D) of D is the abelian
group generated by all isomorphism classes of objects in D, modded out by relations of the form [A]+[C] = [B]
for every distinguished triangle A→ B → C → A[1].

Remark 2.42. If A is an abelian category, then K(A) ∼= K(D(A)).

Definition 2.43. A stability condition on D is a pair (Z,P) where Z : K(D)→ C is a group homomorphism,
and P is a slicing, such that for all 0 6= E ∈ P(φ) where φ ∈ R, we have Z(E) = m(E) · eiπφ for m(E) > 0.

Theorem 2.44 (Bridgeland). The following data are equivalent:{
stability conditions

σ = (Z,P)

}
←→

{
bounded t-structures with hearts A, together with a stability

condition ZA on A, satisfying the Harder–Narasimhan property

}

Proof. Given (A, ZA), we define a slicing as follows: for 0 < φ ≤ 1, define

P(φ) =

{
semistable objects with phase φ

with respect to ZA

}
⊂ A

where the phase is that associated to the central charge Z(A) : K(A)→ H. For n ∈ N and 0 < φ ≤ 1, we
define P(φ+ n) = P(φ)[n]. You then check that this slicing satisfies the definition of a slicing. In particular,
for the third property, suppose E is given. Then, we have a filtration

0 = Ẽ0 Ẽ1 Ẽ2 · · · Ẽn−1 Ẽn = E

Ã1 Ã2 Ãn
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where Ãi ∈ A[ki] for all i, and k1 > · · · > kn. Then, we get filtrations for Ãi in A by semistable objects with
respect to ZA.

In the other direction, if you are given σ = (Z,P), we define A to be the smallest extension closed
subcategory generated by P(φ) where 0 < φ ≤ 1, in which case ZA is just the restriction of Z to A, i.e., we
say E ∈ A is semistable with respect to ZA of phase φ if E ∈ P(φ).

Example 2.45. Let D = Db(Coh(C)) for C a curve, with heart A = Coh(C). We had the central charge
ZA = −deg + i · rk. Semistable objects in D then consist of shifts of sheaves of semistable coherent sheaves
and 0-dimensional torsion sheaves.

Remark 2.46. Existence of stability conditions on Db(Coh(X)) where X is a smooth projective Calabi–Yau
threefold is unknown. You can instead study when X is a K3 surface, or when X is an open Calabi–Yau
threefold.

We will now discuss advantages to having the derived side of the story in Bridgeland’s theorem. The
reason is that we have “more freedom.” The key is that stability conditions σ = (Z,P) form a manifold
called the stability manifold.

Example 2.47. The stability manifold for P1 is C2.

Definition 2.48 ([KS08]).
1. Fix a finite dimensional lattice Λ and assume that there exists a map λ : K(D) → Λ, such that the

stability function Z factors via Λ:

λ : K(D) Λ

C
Z

2. [Support property] Let ‖·‖ be an arbitrary norm on ΛR := Λ ⊗ R. Assume σ satisfies a “support
property”:

inf

{
|Z(E)|
‖E‖

∣∣∣∣ E is σ-semistable

}
> 0

3. Let σ1 = (P, Z1), σ2 = (Q, Z2) be two stability conditions. We define a metric on slicings

dS(P,Q) = sup
06=E∈D

{
|φ+σ1(E)− φ+σ2(E)|, |φ−σ1(E)− φ−σ2(E)|

}
∈ [0,∞]

and a metric on the space Stab(D) of stability conditions

d(σ1, σ2) = sup
{
dS(P,Q), ‖Z1 − Z2‖

}
Main Theorem 2.49. Stab(D) is a smooth, finite-dimensional complex manifold such that

Z : Stab(D) −→ Λ∨ = Hom(Λ,C)

(Z,P) 7−→ Z

is a local homeomorphism.

What the theorem is saying is that deformations in the target copy of Cn give a canonical lifting of the
deformation (Z,P) (W,P#):

(Z,P)

(W,P#)

Z W
Stab(D) Cn

Example 2.50. Let Q be the Kronecker quiver
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Choose z0, z1 ∈ H, and Z(V ) = dim(W0)z0 + dim(W1)z1. We get two cases based on the phase diagram
relating z0, z1 as in Example 2.19: if φ(z1) > φ(z0), then there are two stable objects S0 and S1, and if the
opposite inequality holds, the space of stable objects will change.

In general, if Z  W is a deformation of the central charge that is “small enough” so that the slicing
does not change, and there exists a short exact sequence

0 −→ A −→ E −→ B −→ 0,

such that the orientation of the parallelogram with the phases of A,E,B changes under this deformation, i.e.,

Z(A)

Z(B)

Z(E)
W (B)

W (A)

W (E)

then the moduli space will change.

Example 2.51. Consider A = RepQ the category of quiver representations for a quiver Q. Suppose
Q = (V0, V1) has #V0 = n. Define Z by choosing z1, . . . , zn ∈ H. Consider the deformation where zi are
unchanged for i 6= n, while zn is reflected across the positive real axis: zn = x+ iε 7→ x− iε, x > 0. Then,

P((0, 1]) Q((0, 1]) = A#,

the tilt at the torsion pair (T ,F) where Obj(F) = S⊕kn and Obj(T ) = {V ∈ Obj(RepQ) | Hom(V, Sn) = 0}.
This example shows how the heart changes under wall-crossing.

We can also deform across the negative R-axis, that is zn = −x+ iε 7→ −x− iε, and so

P((0, 1]) Q((0, 1]) = A#[−1],

where A# is the tilt at the torsion pair (T ,F), where Obj(T ) = {S⊕kn } and Obj(F) = {V | Hom(Sn, V ) = 0}.

We now give some examples of stability manifolds.

Examples 2.52. If D = Db(Coh(X)) for X an algebraic variety,

1. dimX = 1 is well understood: if X = P1, then Stab(P1) ∼= C2, and if g(X) > 0, then ˜SL(2,R)

�

Stab(X), and
Stab(X)

/
˜SL(2,R)

∼= {pt}

2. dimX = 2: Bayer–Macri studied K3’s, Xian Lei–Zhao studied P2, and abelian varieties are also
understood.

3. dimX = 3: There are partial results for abelian threefolds. On the other hand, open (e.g. toric)
threefolds are understood.

3 Applications
Lecture 5

We will give one application concerning Donaldson–Thomas and Pandharipande–Thomas invariants, which
are numerical invariants of Calabi–Yau threefolds. We will follow the reference [Tod10].
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3.1 History

Let X be a smooth projective Calabi–Yau threefold, where we recall that a threefold is Calabi–Yau if∧3
ΩX
∼= OX . An example of a Calabi–Yau threefold is the Fermat quintic x51 + x52 + x53 + x54 + x55 = 0 in

P4. In physics (the standard model), you can imagine that reality is 11-dimensional, in which case the inner
space of strings are Calabi–Yau threefolds.

In order to give some predictions about reality, physicists associated some invariants to X. The first one
historically was Gromov–Witten invariants.

Consider the moduli space of stable maps

Mg,n(X,β) =

{
C

f→ X

C genus g

∣∣∣∣∣ f∗([C]) = β ∈ H2(X)

}
.

This is a Deligne–Mumford stack with infinitely many components that is very singular. From the symplectic
point of view, the condition on the right is saying that the image of the curve has a fixed volume. In the
special case where X is a Calabi–Yau threefold, we consider the virtual fundamental class[

Mg,0(X,β)
]vir

,

which is a closed subscheme of the entire Deligne–Mumford stack. It is a dimension 0 scheme, so we can take
the degree

GWg,β = deg
[
Mg,0(X,β)

]vir
∈ Q

which is called the Gromov–Witten invariant of X. You can then put all values of this invariant for different
g, β to give a generating function.

Example 3.1. When g = 0, then the generating function J =
∑

GM0,βt
β is a solution of a hypergeometric

equation, the Picard–Fuchs equation (Givental, Liu–Lian–Yau).
For g = 1, Zinger spent ten years computing J ; for g ≥ 2, the question is wide open.

What people do instead of trying to compute Gromov–Witten invariants näıvely is to introduce new
theories, and claim they are equivalent yet easier to understand than the older theories. For example,
• FJRW (Fan–Jarvis–Ruan–Witten) theory (Landau–Ginzburg/Calabi–Yau correspondence)
• DT (Donaldson–Thomas) theory (Donaldson–Thomas/Gromov–Witten correspondence)

We will be focusing on the latter of these.

3.2 Donaldson–Thomas invariants

Let X be a Calabi–Yau threefold, and consider the Hilbert scheme

In(X,β) =

{
subschemes C ⊂ X, dimC ≤ 1

[C] = β, χ(OC) = n

}

which we sometimes call the Donaldson–Thomas moduli space.

Property 3.2. In(X,β) is projective, and has a symmetric obstruction theory. We can therefore define
In,β = deg[In(X,β)]vir.

The reason why this obstruction theory is necessary is that general Hilbert schemes are very singular;
to define intersection theory on this Hilbert scheme, then, requires a nicely behaved fundamental class.
Obstruction theory allows us to define the virtual fundamental class which fills this role.

As was the case with the Gromov–Witten invariant, the virtual fundamental class [In(X,β)]vir is such
that dim[In(X,β)]vir = 0. Heuristically, this virtual fundamental class “counts” curves inside X satisfying
the cohomology condition [C] = β and χ(OC) = n.

Like with Gromov–Witten invariants, we can put together information for different choices of n and β
into a power series:
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Definition 3.3. Let In,β = deg[In(X,β)]vir ∈ Z. Then, we define Donaldson–Thomas theory as

DT(X) =
∑
n,β

In,βx
nyβ .

Since this has some redundant information when β = 0, given by

DT0(X) =
∑
n

In,0x
n,

we define reduced Donaldson–Thomas theory as

DT′(X) =
DT(X)

DT0(X)
=
∑
β

DT′β(X)yβ .

It was open for a while exactly what this Laurent series looks like.
We now want to define Pandharipande–Thomas theory. One issue with Donaldson–Thomas theory was

that it relied on the hypothesis that X was Calabi–Yau. Pandharipande–Thomas theory, on the other hand,
can be defined even if X is not Calabi–Yau, which makes it useful for inductive proofs (since subvarieties of
Calabi–Yau manifolds are seldom Calabi–Yau) and for proving that Donaldson–Thomas and Gromov–Witten
theory are equivalent (this uses degeneration formulas).

Definition 3.4. We say (F, s) is a stable pair if F is a pure one-dimensional sheaf, and s : OX → F has
cokernel of dimension zero. We can then define the moduli space

Pn(X,β) =

{
stable pairs (F, s)

with [F ] = β, χ(F ) = n

}
=
{
OX

s→ F
}
⊂ Obj(Db(X))

which we sometimes call the Pandharipande–Thomas moduli space.

This looks similar to the Donaldson–Thomas moduli space from before.

Property 3.5. Pn(X,β) is projective, and has a symmetric obstruction theory. We can therefore define
Pn,β = deg[Pn(X,β)]vir.

Theorem 3.6. The reduced Donaldson–Thomas invariant is the same as the Pandharipande–Thomas
invariant, that is, DT′(X) = PT(X).

What is useful about this Theorem is that as we mentioned before, the left-hand side does not behave well
under degeneration, but the right-hand side does. This is the key ingredient in showing Donaldson–Thomas
and Gromov–Witten invariants are equivalent.

Idea of proof. Consider the derived category D = Db(CohX), and consider stability conditions σ = (Z,P) on
X. Recall from before that it is unknown whether the space of stability conditions on a Calabi–Yau manifold
X is non-empty: the condition that Z : K(D)→ C satisfies Z(E) ∈ R>0e

iπφ for E ∈ P(φ) is the hardest to
verify.

To remedy this situation, Toda invented what is called a weak stability condition:

Definition 3.7. Fix a finite rank abelian group Γ, and a filtration

0 ( Γ0 ( Γ1 ( · · · ( ΓN = Γ.

Let Hi = Γi/Γi−1. Then, σ = ({Zi},P) is a weak stability condition if
1. P is a slicing;
2. Each Zi : Hi → C is such that if we define for v ∈ Γ that Z(v) = Zi([v]) where v ∈ Γi \ Γi−1, then
Z(E) ∈ R>0 exp(iπφ);

3. A condition on supports is verified.

18



Note the key difference from a stability condition is that Z does not have to be linear on all of K(D). For
weak stability conditions, we can show that their moduli space is nonempty by constructing one explicitly:

Example 3.8. Let X be a smooth projective variety, with dimX = d, and W an ample divisor. Let
D = Db(CohX), and let Γ = im(ch: K(D) → H∗(X,Q)). Also, let Γi = Γ ∩ H≥2d−2i(X,Q). Then,
Hi = Γ ∩H2d−2i(X,Q). Choose 0 < φ < φd−1 < · · · < φ0 < 1 and define Zi so that

v 7→ exp(iπφi)

∫
X

v ∪ ωi︸ ︷︷ ︸
>0

We then define
P(φi) = {E ∈ CohX, E is pure of dim(Supp) = i}.

Now to prove the theorem, we define a subcategory DX = 〈OX ,Coh≤1(X)〉tr, the smallest subcategory of

Db(CohX) containing OX and all coherent sheaves with support of dimension ≤ 1. Toda then proceeded by
finding the heart AX of DX , which is a tilt of the standard t-structure on DX , and also constructed a family
of stability conditions on DX , which depends on (z0, z1) ∈ H. He showed that if the phase of z1 is greater
than that of z0, then you get the Donaldson–Thomas moduli space, and if the phase of z1 is smaller than
that of z1, then you get the Pandharipande–Thomas moduli space (this step is classical in flavor). Finally, he
showed that this numerical invariant does not depend on stability conditions on a connected component, thus
showing that DT′ = PT. This last step is non-trivial, and requires studying the Hall algebra.
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