
Quantum Computing

Summer minicourse
University of Michigan

July 2016

Disclaimer

The following are rough lecture notes, and are likely rife with typos. See the end for a list of
references used, but the notes adhere fairly closely to Ronald de Wolf’s excellent set of quantum
computing notes.

Notation

� Elements of vector spaces will be written jvi.

� Elements of the dual space will be written hvj. All our vector spaces will have a (nondegenerate)
inner product, so this is well-defined.

� The inner product of two vectors v;w is denoted hvjwi. Our inner product will be Hermitian,
so hvjwi D hwjvi. We also write hvjAjwi for hvjAwi.

Formalism of QM

To avoid some obnoxious subtleties, all the spaces in question are finite-dimensional. Note this
precludes modeling the phenomena of position, momentum, etc. that we’re most used to, but works
great for quantum computing.

� To an isolated physical system we associate a Hilbert space.

� A point in the Hilbert space represents the “wave function”, which describes the physical state
of the system.

� Two wavefunctions that differ by a constant lead to the same physical state (corresponds to
probablity renormalization and an overall scaling factor).

Example. Consider a 2-dimensional Hilbert space with orthonormal basis fj0i; j1ig, for example
modeling the “spin” of an electron along the z-axis. An arbitrary state can be written

j i D ˛j0i C ˇj1i;

and we’ll demand that j˛j2 C jˇj2 D 1. Such a physical system is called a “qubit”, and in some
sense this example is the only one we’ll discuss.

There are two things we can do to a quantum state: measure something about it, or let it “evolve”
(the difference between them is a deep and unanswered philosophical question).

Measurements

� A measurement A will correspond to a Hermitian operator. (Why Hermitian: real eigenvalues,
which is all we measure, and we have orthonormla eigenbases.)

� We will always measure an eigenvalue of the Hermitian operator. After we measure, the new
state of the system is an eigenvector of the eigenvalue.

1

� If each eigenvalue has multiplicity 1, it is then clearly determined what state the system is in
(since the global phase doesn’t matter):

� Say fv1; : : : ; vng is an orthonormal basis of eigenfunctions. The probability of measuring a
result corresponding to the eigenvector jvi i is the squared magnitude of the coefficient of vi ,
i.e., jhvi jAj ij

2.

Example. Return to our previous example. In the basis fj0i; j1ig the operator measuring the “spin”
is (up to scalars)

A D

�
1 0

0 �1

�
:

Our basis is already an eigenbasis; recall that the state is D ˛j0iCˇj1i. The chances of measuring
1 are j˛j2 and the chances of measuring �1 are jˇj2. (Note that this is why we demanded the
normalization condition!) If we measure 1, the state collapses to j0i, if we measure �1 it collapses
to j1i.

Let’s specialize and say that D 1p
2
.j0i C j1i/. Now, let’s say we have another operator

A0 D

�
0 1

1 0

�
:

The eigenvalues are still ˙1, and the eigenvectors are j˙i WD 1p
2
.j0i ˙ j1i/. Reexpressing in this

basis, we have D jCi. Thus, the system is already in an eigenstate of the operator, so we’re
guaranteed to measure C1!

Contrast this with 0 D 1p
2
.j0i� j1i/. In the original basis, this has the same equal measurement

probabilities as ! But 0 D j�i, so measured in the new basis we’re guaranteed to get �1. This
example is in some sense the basis of quantum computing.

Time evolution

We can act on a quantum state by a unitary transformations (which unitary transformations are
“realistic” will be discussed briefly later). Why unitary? We want to preserve the norm of a vector
(since physically this must always be 1), so by the polarization identities we need to preserve the
inner product, and hence be unitary. Note this implies quantum transformations are reversible!

Example. Let

U D
1
p
2

�
1 1

1 �1

�
(with respect to the basis fj0i; j1ig). This is clearly unitary. Moreover, note that U j0i D jCi and
U j1i D j�i. This example will come up many times.

Multiparticle systems

You can’t compute with a single electron. Given two noninteracting systems with associated Hilbert
spaces H1;H2, the total associated Hilbert space is H D H1 ˝H2. (This generalizes to arbitrary
numbers of particles.) We may as well specialize to H1;H2 the 2-dimensional vector spaces above.
We’ll adopt the following notation:

j00i WD j0i ˝ j0i; j01i WD j0i ˝ j1i; j10i WD j1i ˝ j0i; j11i WD j1i ˝ j1i:

Thus an orthonormal basis of H is fj00i; j01i; j10i; j11ig. All of the above details still apply, but we
should make a note on measurement:

Consider the measurement corresponding to measuring only the first qubit; this corresponds to
the hermitian operator 0BB@

1

�1

1

1:

1CCA
2

Say we measure the first qubit the state

.1=2/.j0i C j1i/.j0i � j1i/ D .1=2/.j00i C j10i � j01i � j11i/;

and we observe j1i, what does the system collapse to? We’ll certainly get an eigenstate where the
first qubit is in the state j1i, but what about the second qubit? We will get the superposition
.1=
p
2/.j10i � j11i/, i.e., the (renormalized) result of applying the projection to the j1ai subspace.

Note that now “quantum entanglement” can be seen as simply the fact that the elements of the
tensor product aren’t all pure products. Take

 WD
1
p
2
.j00i C j11i/:

There is no way to write this as

.˛j0i C ˇj1i/„ ƒ‚ …
electron 1

˝ .
 j0i C ıj1i/:„ ƒ‚ …
electron 2

So, what if we measure the first electron? We have a :5 probability of observing the state j0i, and
moreover if we do measure j0i, the state of the system afterwards must be j00i (since j01i appears
nowhere in the expansion). That is, if we then measure the second electron it must be in state j0i.
(And likewise for observing j1i).

It doesn’t matter how far apart these particles are; measuring the system must instanteously
collapse the wavefunction. This is the so-called “spooky action at a distance” Einstein, Podolsky,
and Rosen were so skeptical of. (Though note this doesn’t violate relativity; no information can be
transmitted faster than the speed of light.)

Quantum circuits

The basis for our model of quantum computing will be “gates”: a gate is simply a unitary transfor-
mation acting on one or more qubits.

Bitflip

Just flips the two basis states:

X D

�
0 1

1 0

�
Phasegate

Alters the phase of j1i.

R� D

�
1 0

0 ei�

�
The special case where � D � (so the phase on j1i is just negated) is called a phaseflip, denoted Z.

Hadamard

H D
1
p
2

�
1 1

1 �1

�
CNOT

This is a two-qubit gate; it performs a bitflip on the second qbit if the first qubit is j1i, i.e.,
j00i 7! j00i; j01i 7! j01i; j10i 7! j11i; j11i 7! j10i. In the basis j00i; j01i; j10i; j11i:

CNOT D

0BB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA :

3

n-bit Hadamard

Mathematically this is just H˝n. Physically, this is just n Hadamard gates applied simultaneously
to each qubit. First, note that H˝nj0 � � � 0i D 1

2n=2
.j0iCj1i/˝� � �˝ .j0iCj1i/, which when expanded

is just
1

2n=2

X
j2f0;1gn

jj i;

the uniform sum over all possible qubit strings.
More generally, if i 2 f0; 1gn, then some symbol-pushing shows that

H˝njii D
1

2n=2

X
j2f0;1gn

.�1/i �j jj i:

Finally, note that H 2 D I , and likewise .H˝n/2 D I .

A tiny bit of complexity classes

We’ll be very informal in our handling of complexity classes. First, the classical setup: classical
circuits are finite directed acyclic graphs using AND, OR, or NOT gates. Some bits are fed into the
circuit, and some output bits come out. a circuit family is a sequence of circuits Cn. A problem can
be solved in polynomial time if there is a circuit family which “solves” the problem for each input
size n such that the size of Cn grows polynomially in n. The set of polynomial-time problems is
denoted P .

There is also a classical notion of randomized circuits, which receive some random bits as input.
A randomized circuit computes a function if it returns the right value with probability higher than
1=2 C � for some �. We define analogously the family BPP of bounded-error polynomial time
problems. It is widely believed that BPP D P , and certainly BPP � P .

Finally, a quantum circuit is a finite directed acyclic graph using certain elementary gates (which
gates?). The input are certain qubits, and the output are qubits which we can measure. We then
probabilistically obtain an answer. We define BQP as the problems answerable with probability
> 1=2C � by a family of quantum circuits growing at most polynomially with n.

Whether BQP D BPP is unknown. In the upcoming lectures, we’ll examine factoring, which is
in BQP but is not known to be in BPP . If it is not in BPP , this provides a counterexample to
the “extended Church–Turing hypothesis “Time on all “reasonable” machine models is related by a
polynomial.

Which gates are elementary?

This is partially a physical question of what unitary transformations we can easily effect, so we
won’t go into too much detail. It is known that the set of all 1-qubit gates and the 2-qubit CNOT
gate is universal, but this is an uncountable set! More usefully, the set of CNOT, Hadamard,
and the phase gate R�=4 is “dense”, in the sense that any other unitary can be approximated
arbitrarily well. Since our algorithms are probabilistic anyways, this is nothing to worry about.
Moreover, this approximation is efficient, by the Solovay–Kitaev theorem. (Note: this is actually
a theorem about effectively approximating a dense set in SU.d/ using certain generators; see
https://www.cs.umd.edu/ amchilds/teaching/w11/l01.pdf). In any case, we’ll allow our circuits to
have “any” unitary gates, but understand that technically were you to build the circuit physically
you’d approximate by CNOTs, Hadamards, and R�=4.

4

Quantum teleportation

The next example is instructive, though perhaps not truly quantum computing. Here is the circuit:

|a1〉 = |ψ〉 • H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|a2〉 ⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|b1〉 X Z

Let’s say that Alice has a quantum state D ˛j0i C ˇj1i she wants to transmit to Bob. They
share an entangled pair 1p

2
.j00i C j11i/ and a classical communication channel (e.g., email). The

beginning state is then

.˛j0i C ˇj1i/˝
1
p
2
.j00i C j11i/ D

1
p
2
.˛j000i C ˛j011i C ˇj100i C ˇj111i/

with Alice with the first two electrons and Bob the third. Alice performs a CNOT gate on her
qubits, so the state is

1
p
2
.˛j000i C ˛j011i C ˇj110i C ˇj101i/

then a Hadamard transform on the first, so the state is

1

2
.˛j000i C ˛j100i C ˛j011i C ˛j111i C ˇj010i � ˇj110i C ˇj001i � ˇj101i/ D

1

2

�
j00i.˛j0i C ˇj1i/

Cj01i.˛j1i C ˇj0i/

Cj10i.˛j0i � ˇj1i/

Cj11i.˛j1i � ˇj0i/
�

Remember the last qubit belongs to Bob! Then Alice measures her qubits and transfers the results
to Bob. If she gets j00i, Bob’s qubit collapses to ˛j0i C ˇj1i, the desired state. If instead she
measures j01i, Bob does a bitflip; if she measures j10i Bob does a phaseflip, and if she measures j11i
Bob does both. More simply, if her first qubit is 1, Bob does a phaseflip, and if her second qubit is
1, Bob performs a bitflip.

Note that the state of Alice’s original qubit is destroyed. It’s easy to see (somewhat informally
perhaps) that there is no series of unitary transformations that can “clone” an arbitrary qubit. If
there were, it must map j0i 7! j00i and j1i 7! j11i. But then by linearity it would map

1
p
2
.j0i C j1i/ 7!

1
p
2
.j00i C j11i/ ¤

1
p
2
.j0i C j1i/˝

1
p
2
.j0i C j1i/:

This is important, because it rules out the use of classical error correction codes that simply duplicate
a bit.

Quantum queries

The last tool we need to discuss before we get down to real algorithms is quantum queries. A query
is a “black box” that allows us to access each bit of a bitstring. Let N D 2n, and let x 2 f0; 1gN .
The quantum query Ox is a unitary operator on nC 1 qubits that maps, for each i 2 f0; 1gn (viewed
as a number f0; 1gN), jiij0i 7! jiijxi i (and to preserve unitarity, jiij1i 7! jiijxi ˚ 1i). That is, we
use the first n qubits to address an index in the 2n-tuple string x.

Example. Let N D 4 D 22, and let x D 1011. Then the quantum query Ox maps

j00ij0i 7! j00ij1i; j01ij0i 7! j01ij0i; j10ij0i 7! j10ij1i; j11ij0i 7! j11ij1i:

There’s also a related query Ox;˙ that maps jii 7! .�1/xi jii in the notation above.

5

Example. In our previous example, Ox;˙ maps

j00i 7! �j00i; j01i 7! j01i; j10i 7! �j10i; j11i 7! �j11i:

In the first few “toy” algorithms we cover, we’ll count the number of quantum queries, instead of
the number of gates used in the classical model. Note that the speed-ups we’ll demonstrate do not
hold in the gate-based model! That is, we show quantum speed-ups “relative to the oracle”, that is,
relative to the existence of the magical query box.

Deutsch–Jones

Let N D 2n, and say we’re given x 2 f0; 1gN such that either all xi are the same, or exactly half of
them are 0 and half are 1. We want to figure out which of these two possibilities hold (and if they’re
all the same we don’t care which they are). Classically, a deterministic algorithm obviously needs at
least N=2C 1 queries. (Of course, there’s an obvious probabilistic strategy; more on that later.)

What about quantum mechanically? Consider the following circuit, drawn for the n D 2 case:

|a〉 = |0〉 H
Ox,±

H

|b〉 = |0〉 H H

Recall what happens when we feed j0ni to H˝n: we get a uniform sum .1=
p
2n/

P
j2f0;1gn jj i. The

query Ox;˙ then maps each jj i 7! .�1/xj jj i. Now, recall what happens when we feed a state jj i

through H˝n, the second set of Hadamards: jj i 7! .1=
p
2n/

P
k2f0;1gn.�1/

j �kjki.
Now, when we feed the whole state through we get

.1=
p
2n/

X
j2f0;1gn

.�1/xj jj i 7! .1=2n/
X

j2f0;1gn

.�1/xj
X

k2f0;1gn

.�1/j �kjki:

This looks complicated, but consider the coefficient of j0ni when we expand: for each j , .�1/j �j0
ni D 1,

so the coefficient of j0ni when we expand is .1=2n/
P
j2f0;1gn.�1/

xj ; by the assumptions on x this is
either:

� 0 if half are 1 and half are 0.

� ˙1 if they’re all the same.

Thus, let’s measure the final state. If all xj are the same we’re guaranteed to get j0ni; if not, we’re
guaranteed not to. Thus, the result tells us the answer deterministically.

This algorithm took 2n Hadamard gates and 1 quantum query; the corresponding deterministic
classical algorithm takes N=2 C 1 D 2n�1 C 1 classical queries. Of course, for large N a proba-
bilistic algorithm quickly becomes very effective. So here the quantum speedup only concerns the
deterministic algorithm.

Bernstein–Vazirani

The following algorithm uses the exact same circuit to solve a different problem. Say x 2 f0; 1gN

such that there is some “hidden” string a 2 f0; 1gn such that xj D j � a mod 2 (where j is taken to
be the position in binary, hence a vector in f0; 1gn).

This is perhaps confusing, so an example: Let n D 2, so N D 22 D 4. Say x D 0110. Note that
if we take a D 11, then:

x0 D 00 � 11 D 0;

x1 D 01 � 11 D 1;

x2 D 10 � 11 D 1;

x3 D 11 � 11 D 0;

so a D 11 is our desired “hidden” string.

6

Given such an x, how can we find a? It turns out the previous algorithm works perfectly. Recall
that after the quantum query we have the state

1
p
2n

X
j2f0;1gn

.�1/xj jj i:

By assumption xj D j � a mod 2, so we can write

1
p
2n

X
j2f0;1gn

.�1/xj jj i D
1
p
2n

X
j2f0;1gn

.�1/j �ajj i:

Now, note that the latter is exactly the Hadamard transform of jai! Moreover, the Hadamard
transform is its own inverse, so when we apply H˝n to this state, we simply get back the pure state
jai. Therefore all we need to do is measure the output state, and we’re guaranteed to find a.

Classically, a query can reveal at most 1 bit of a at a time, so it takes at least n classical queries,
whereas we can do it in 1 quantum query!

Simon’s algorithm

Again let N D 2n. Take X D .x1; : : : ; xN /, with xi 2 f0; 1g
n. That is, X is an N -tuple of n-bit

strings, or, alternatively, a function f0; 1gn ! f0; 1gn. Assume that there is some s 2 f0; 1gn, s ¤ 0n,
such that xi D xj (as bitstrings!) if and only if i D j ˚ s, where ˚ is bitwise addition (i.e., addition
in the vector space .Z=2Z/n). That is, X is a 2-to-1 function with “mask” s. The goal is to find
s with the fewest number of queries. Note that our query will now be a map on 2n-qubits that
maps jiij0ni 7! jiijxi i (since xi is an n-bit string); if you like you can think of this as n single-qubit
queries. Below is the circuit diagram, shown for n D 2.

|a〉 = |0〉 H

Ox

H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|b〉 = |0〉 H H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|c〉 = |0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|d〉 = |0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

The circuit will function as follows: the Hadamards on the first n qubits and the query transform
the state as

j0nij0ni
H˝n˝I
�������!

1
p
2n

� X
i2f0;1gn

jii

�
j0i

Ox
����!

1
p
2n

� X
i2f0;1gn

jiijxi i

�
:

We then measure the second n-bit register, yielding some xj . The first n-bit register then collapses
to a superposition of the two states corresponding to xj , that is, jj i and jj ˚ si:

1
p
2n

� X
i2f0;1gn

jiijxi i

�
measure
�������!

1
p
2
.jj i C jj ˚ si/jxj i

Now, we apply the second round of Hadamards, which yields (by our previous formula)

1
p
2nC1

X
k2f0;1gn

�
.�1/j �k C .�1/.j˚s/�k

�
jki:

Convince yourselves that .j ˚ s/ � k D .j � k/˚ .s � k/ and .�1/a˚b D .�1/a.�1/b, yielding

1
p
2nC1

X
k2f0;1gn

�
.�1/j �k C .�1/.j˚s/�k

�
jki D

1
p
2nC1

X
k2f0;1gn

.�1/j �k
�
1C .�1/s�k

�
jki:

7

So, when is the coefficient of jki nonzero? Exactly when s � k D 0 mod 2, which is a linear equation
in the coefficients of s. So, we just keep sampling the first n qubits, obtaining different values of
k, and knowing that each k gives a linear equation satisfied by s. s is a nonzero element of the
n-dimensional vector space f0; 1gn. Each independent linear equation cuts down the dimension by 1,
so we need to find n � 1 linearly independent conditions on s.

How long do we expect this to take? If we’ve already found k � n � 1 linearly independent
vectors, we’ve described a k-dimensional subspace containing 2k � 1 nonzero elements. Any nonzero
element not in this subspace gives a new condition, and there are 2n�1 � 2k such elements we might
observe out of 2n�1 possible elements. Thus the chances of getting a linearly independent condition is

2n�1 � 2k

2n�1
> 1 �

2k

2n�1
�
1

2
:

We need to find n � 1 conditions, so the number of queries we expect this to take is linear in n.
Thus, we can find s with O.n/ many n-qubit queries (or O.n2/ many single qubit queries).

Classical case

With a bit of careful analysis, we can rigorously show the following intuitively obvious result.
Classically, the best method is essentially to sample the outputs at random, that is, to check the xi
and hope to find i; j with xi D xj . How many times do we expect to have to sample? With a bit of
thought, you can see that this is essentially the birthday paradox.

Let’s say you’ve examined T of the xi . If any two are the same, we’ve found s, as per above.
There are T .T � 1/=2 possible “match-ups” after taking T samples. Since s 2 f0; 1gn and s ¤ 0n,
there are 2n � 1 possible choices. Thus, the chances of finding it after T samples is

T .T � 1/=2

2n � 1
�

T 2

2nC1
:

Thus, to find 1 collision we expect it to take roughly T �
p
2nC1 queries.

So, the quantum method takes O.n/ quantum queries (that is, it’s polynomial in n), while the
classical method is exponential in n. Thus, we’ve demonstrated an exponential speedup (relative to
an oracle).

Shor’s algorithm

This algorithm factors a number N (with some high chance of success) in

O.log.N /2.log logN/2 log log logN/

time, which is only slightly worse than quadratic in the length of the number to be factored. The
best known classical (randomized) algorithms (the general number field sieve method) run in

2log.N/
˛

;

where ˛ can be shown rigorously to be at most 1=2 but is believed to be at most 1=3.

Reduction to period finding

The setup is as follows: N is a large composite number1, which we may as well take to be odd, and
x is some number 1 < x < N which is also coprime to N . (Note that Euclid’s algorithm allows us
to calculate gcds in linear time in the number of input bits, so we’re not cheating here.) Consider
the sequence

x0 mod N; x1 mod N; : : : :

There is of course some smallest value r such that xr D 1 mod N (but since Z=NZ is not a group
under multiplication r does not need to divide N). Let’s assume we know r .

1If N is prime, Shor’s algorithm won’t tell us anything, but there are fast primality tests, so we may as well
assumed we’ve checked that N is composite.

8

The following is what we want to do:

xr D 1 mod N

.xr=2/2 D 1 mod N

.xr=2/2 � 1 D 0 mod N

.xr=2 C 1/.xr=2 � 1/ D 0 mod N;

and then conclude that xr=2 C 1 and xr=2 � 1 must each share some factor with N which is < N ,
and hence taking gcd.xr=2 C 1;N / and gcd.xr=2 C 1;N / gives two factors of N .

For this to be valid, we need to ensure two conditions: r is even, so xr=2 exists, and xr=2 ˙ 1 are
not 0 mod N , so that gcd.xr=2 ˙ 1;N / ¤ N . We’ll show that with probability � 1=2 a randomly
selected x coprime to N will satisfy both these conditions.

First, consider the case where N D pe (with p odd). Then G D .Z=NZ/� is cyclic of order
pe�1.p � 1/, which is an even number. To see this, note the only elements of Z=NZ not coprime
to N are p; 2p; .pe�1p/. There are pe�1 of these, so j.Z=NZ/�j D pe � pe�1 D pe�1.p � 1/. Write
pe�1.p � 1/ D 2dm.

Let g be a generator of G. First say x D gl with l odd. Then xr D glr D 1 mod N . Then
jGj j lr . Since l is odd, we must have that 2d j r . Thus at least half of the elements of G have
period divisible by 2d .

Now let l be even. Note then that .gl=2/jGj D .gl /jGj=2 D 1 mod N , so r j jGj=2 D 2d�1m, so
2d - r . Thus, we see that exactly half the elements of G have order divisible by 2d and half do not.

We’ll also need the following calculation: given some t � d , what are the odds that a random
x 2 G has order 2tk, for any k? (That is, what is the order that 2t is the maximal power of 2

dividing x?). Again write x D gl . If x2
tk D 1, then g2

tkl D 1, so jGj D 2dm j 2tkl . Since k is odd,
we must have l D 2d�tc for c odd (by minimality of jxj/. Conversely, any l of this form yields an
element with order 2tk for some odd k. Thus, we just need to count how many distinct l there are
of the form 2d�tc for c odd. There are 2tm distinct multiples of 2d�t (since after that point they
repeat), and half, i.e., 2t�1m, have even c, so there are .2t � 2t�1/m distinct elements of the form
2tc for c odd, and these are the elements with order 2tk for fixed t and any k. The chances of an
element having order of the form 2tk is then

.2t � 2t�1/m

2dm
�
.2d � 2d�1/m

2dm
� 1 � 1=2 D 1=2:

Now, take N D pe11 � � �p
ek
k

. By the Chinese remainder theorem choosing a random element of
Z=NZ coprime to N is the same as simultaneously and independently choosing an element of each
Z=peii Z coprime to p

ei
i . Let ri be the period of x mod p

ei
i . It’s clear that each ri j r . The only way

that r can be odd then is if all ri are odd. But as above, the chance of ri being even is at least 1=2,
so the chance of r being odd is less than 1=2k � 1=4.

Now, assume that r is even. Finally, note first that xr=2 ¤ 1 mod N , since this violates minimality
of r . Moreover, we claim that xr=2 ¤ �1 mod N with probability at least 1=2. If xr=2 D �1 mod N ,
then xr=2 D �1 mod p

ei
i for each i . Then ri - .r=2/ for all i . But then we claim that all the ri must

have the same power of 2 in their prime decompositions (assume not: if ri D 2dm and rj D 2en,
with e > d , then 2em j r , so 2e�1m j r=2, so ri D 2

dm j 2e�1m j r). Since r is even some ri is even,
so all the rj are divisible by the same power of 2, but we’ve shown the odds of rj being divisible by
a particular power of 2 are at most 1=2 for each j . Since we’ve assumed already that r is even, and
hence some ri is even, the chance of things going wrong at this point is at most 1=4.

Thus, the chance of either r being odd or r being even and xr=2 D �1 mod N is 1=4C 1=4 � 1=2.
Therefore if we simply choose x randomly and run the algorithm, checking at the end if it was a
“good” x, it will only take a few tries (i.e., a number of tries that doesn’t influence the complexity
class).

9

Quantum period finding

Quantum Fourier transform

First, recall the classical “discrete Fourier transform”, a unitary operator which maps Cq ! Cq :0B@u1:::
uq

1CA 7!
0B@v1:::
vq

1CA ; vj D
1
p
q

qX
iD1

ui e
2�ij=q

WD
1
p
q

qX
iD1

ui !
ij ;

where ! is a primitive q-th root of unity.
The quantum fourier transform is just the discrete fourier transform applied to the vector of

amplitudes of basis states. In matrices,

Fq D
1
p
q

0BBBB@
1 1 1 � � � 1

1 ! !2 : : : !q�1

1 !2 !4 : : : !2.q�1/

1 !3 !6 : : : !3.q�1/

1 !q�1 !2.q�1/ : : : !.q�1/
2

1CCCCA :

Note that the Hadamard gate is just the q D 2 case of this!
One can show (and we will later if time permits) that you can implement the QFT for n qubits

(note that this is q D 2n!) in O.n2/ gates (using Hadamards and phase rotation gates), so can use
the QFT in polynomial-time algorithms without worrying we’re sweeping anything under the rug.

Modular exponentiation and time complexity

We won’t go deeply into the details of how to efficiently compute modular exponentiation on a
quantum computer; the algorithm used is classical, and classical circuits can be effectively computed,
so this isn’t really interesting as a quantum step. The rough idea is to repeatedly square x; x2; x4; x8,
and then combine these to find xi for any i . We can multiply two n-bit numbers mod N via
the Scönhage–Strassen algorithm in O.logN log logN log log logN/ time, and you can show that
breaking the number up into binary representation and multiplying all the squares gives We can do
this in O..logN/2 log logN log log logN/ time, and will need to do so approximately O.log logN/
times. This is the bottleneck of the algorithm, as it runs slower than the quantum fourier transform.

The fourier transform takes O.n2/ D O.log.N /2/ gates, and we use it O.log logN/ times (each
time we evaluate f). This yields

O.log.N /2.log logN/2 log log logN/

time.

The circuit

So, let N be the number to be factored. Pick q D 2l with N 2 � q � 2N 2 (can always do this: 2M
is just shifted left one bit, so in between is some number of the form 10 : : : 0.)

Let n D dlogN e (i.e., so n bits is enough to express f .a/ D xa mod N). Take the following
l C n-qubit circuit:

10

We start with the first Fourier transform (which actually behaves identically to the n-bit
Hadamard on the input state)

j0lij0ni 7!
1
p
2
l

X
jaij0ni 7!

1
p
q

X
jaijf .a/i:

Now, we measure the second register, obtaining some f .s/ (say s is minimal). What elements of the
first register are consistent with this second register? Say there happen to be m such distinct elements.
Note that xa D xs mod N exactly when a � s mod N , so this is the set M D fs C jr W 0 � j < mg.
Thus after the measurement we have a superposition of jsi; js C ri; js C 2ri; : : : :

1
p
m

m�1X
jD0

jjr C sijf .s/i

(We’ll suppress the second register from here on.) Now, apply the Fourier transform:

1
p
m

m�1X
jD0

1
p
q

q�1X
bD0

e2�ib.jrCs/=qjbi D
1
p
mq

q�1X
bD0

e2�i.sb=q/
�m�1X
jD0

e2�i.jrb=q/
�
jbi:

Now, we’re going to observe the first l qubits, and get some jbi. But what jbi do we expect to
see, and what does this tell us about r? Consider the coefficient of some arbitrary jbi, which has
absolute value

j
1
p
mq

�m�1X
jD0

e2�i.jrb=q/
�
j:

If jrb=q 2 Z, so e2�i.jrb=q/ D 1, the parenthesized sum is obviously m. If the sum is not 1, we just
use the formula for the partial sum of a geometric series to see the parenthesized term is

1 � e2�i.rbm=q/

1 � e2�i.rb=q/

(Write cases on board here!)
Now, there are two cases to consider.

Case 1 : The first is easy but unlikely: r j q. Then rm D q so m D q=r . Assume for a second that
we’re considering a b such that e2�i.rb=q/ D 1. Then rb=q 2 Z, so q=r j b. The squared amplitude
is then .m=

p
mq/ D m=q D 1=r . There are exactly r such b (q=r; 2q=r; : : : ; rq=r) so actually all of

the amplitude is taken up by such jbi, and the other states have zero amplitude. Thus only b that
are integer multiples of q=r are in the superposition. How do we use this to find r?

Let’s measure; we’ll observe some b D cq=r , with c randomly distributed between 0 and r . Then
b=q D c=r . We know b and q, but not c and r . If c and r are coprime, then we can find r simply
by writing b=q in lowest terms. So we just need to try until we get such a c (if we get a nonworking
example, we just test the resulting number quickly and see it fails). What are the odds of c being
coprime to r? To know this, we’ll use a number-theoretic estimate on the Euler totient function:
'.r/ 2 O.1= log log r/ (i.e., '.r/= log log r ! 1/. Thus we expect to need roughly log log r tries
before finding such a c.

Case 2 : This is the more likely case, where r - q. Now m Š bq=rc. We claim that we’re likely
to see a jbi close to an integer multiple of q=r (which is not an integer!). We use the following
estimate:

j1 � ei� j D jei�=2.e�i�=2 � ei�=2/j D j2 sin.�=2/j;

so we can write
1 � e2�i.rbm=q/

1 � e2�i.rb=q/
D
j sin.�rbm=q/j

j sin.�rb=q/j
:

We’ll bypass some rigorous estimates here, but here’s the heuristic: if b is close to a multiple of
q=r , the argument on the bottom is close to an integer multiple of � , and hence the denominator is

11

small. For many such b, the top will not be small, since the additional factor of m makes it oscillate
“faster”.

Precise calculations will show with high probability we will measure a jbi such thatˇ̌̌̌
b

q
�
c

r

ˇ̌̌̌
�

1

2q

Again, we know neither c nor r .
Note that we chose q such that N 2 < q � 2N 2, and clearly r � N . But let c0=r 0 be a distinct

fraction from c=r , and assume r 0 � N as well. Then c=r ¤ c0=r 0, so jcr 0 � c0r j � 1. But thenˇ̌̌̌
c

r
�
c0

r 0

ˇ̌̌̌
D

ˇ̌̌̌
cr 0 � c0r

rr 0

ˇ̌̌̌
�

1

N 2
>
1

q
:

Thus c=r is the only approximating fraction close enough (i.e., closer than 1=2q) to b=q with
denominator less than N .

So we just need a way to obtain such a fraction, but we know b and q. We do so via the continued
fraction expansion of b=q. With good probability (and enough tries) c and r will be coprime, so by
writing the approximation in lowest terms we obtain r .

Discrete logarithm problem

There’s a related problem, which we’ll discuss briefly: the discrete logarithm problem. Let p
be a prime, and let G D .Z=pZ/�. Then G is cyclic; fix some generator g. For any x D gy ,
define logg.x/ D y. The problem is for fixed p; g, to calculate logg.x/ for any x. The best

classical algorithm is O.exp.log.p/1=3 log.log.p//2=3/, while we’ll demonstrate a quantum algorithm
in O.log.p/3/.

It’s essentially a variant of Shor’s algorithm for factoring (and was introduced in the same 1993
paper). Define a function f W Z=.p�1/Z�Z=.p�1/Z! .Z=pZ/� by f .a; b/ D gax�b D ga�yb. You
can verify that f .a; b/ D f .a0; b0/ if and only if .a; b/ D .a0; b0/C �.y; 1/ for some � 2 Z=.p�1/Z.
Again, we’re going to set up a superposition, apply f , then measure some value, then fourier
transform to reveal information about y.

Here’s a sketch; we’ll have three registers; in practice each would be l qubits, with p < 2l < 2p
(so they can all represent numbers modp). We’ll simplify things a bit; first we prepare a uniform
superposition over all pairs in the first two registers, then apply f :

1

p � 1

p�1X
aD0

p�1X
bD0

jaijbij0i 7!
1

p � 1

p�1X
aD0

p�1X
bD0

jaijbijga�ybi

Now, measure the second register, obtaining some f .a0; b0/. Then the first state collapses to

1
p
p � 1

p�2X
kD0

ja0 C kyijb0 C kijf .a0; b0/i

Now, again there is some information in the first two registers we want to obtain (the value of y),
but it’s shifted by some a0 and some random k; again we use the quantum fourier transform to the
first two registers obtain this information. This yields, after some algebra:

1
p
p � 1

p�2X
l1D0

e
a0l1�b0yl2

p�1 jl1ij�yl2ijf .a0; b0/i

where l2 D �yl1 mod p � 1. Now, we measure the first register, obtaining some l1 2 Z=.p � 1/Z,
and the second, obtaining some number which is “secretly” �yl1 mod p � 1. If l1 is coprime to
p � 1, then we can (quickly) calculate l�11 , and then obtain y D �l2l

�1
1 by multiplying the result in

the second register.

12

Hidden subgroup problem

We’ve had several similar algorithms in a row: Simon, Shor’s factoring, and the discrete logarithm.
What’s going on here?

These are really all examples of hidden subgroup problems.

Definition. Let f W G ! X be a function from a group G to some set X , and say we have some
quantum oracle that can evaluate f on G (where we’ll code G as binary strings as before). Let
H � G be a subgroup of G such that f “hides” H , in the sense that f .g/ D f .g0/ if and only if
g; g0 are in the same coset of H . The goal is to find generators for H in O.poly.log.jGj/// (i.e.,
polynomial in the log of the size of G).

Note that the naive classical algorithm of just evaluating f on all of G succeeds in O.poly jGj/
time, so the goal is to come up with a “feasible” method of finding generators for H .

Example. � Simon’s algorithm: Here f W f0; 1gn D .Z=2Z/n ! .Z=2Z/n, f .i/ D xi , with
H D f0; sg (where s was the “masking” bitstring), and the goal was to find s.

� Shor’s algorithm: Here G D Z=qZ, X D Z or Z=NZ, with f .a/ D xa mod N , and H D hri.

� Discrete log: G D Z=.p�1/Z � Z=.p�1/Z, X D .Z=pZ/�, f .a; b/ D gax�b, and H D h.y; 1/i.

So in general what can be said about this kind of problem? First, note that the subgroup H
is important, but the function f not so much. First, let’s do an example showing the power of
this formulation. Recall the graph isomorphism problem, which is to decide if two finite graphs
are isomorphic, and is known to be NP and believed to not be in P . (It’s very similar to integer
factorization in this way). If we could solve the hidden subgroup problem for a certain subgroup of
Sn,

So, let A;B be the two graphs, connected of size n, and let C D A tB. Let K D Aut.C /. Then
certainly K < S2n. Let H D Sn � Sn, and let � D .1 nC 1/.2 nC 2/ : : : .n 2n/ (i.e., just swapping
the labels of the two graphs). Note that certainly K � H [�H . If A 6Š B then K � H entirely
(since we can’t swap between the two disjoint components), while if A Š B then half of K is in H
and half is in �H . Thus, if we observe all the generators of K are in H , for example, we’d have
solved the graph isomorphism problem (it’s easy to see if a generator is in H vs. �H ; just check if it
sends the first vertex to the first n or last n vertices!)

We can place this in the formalism of the hidden subgroup problem with the function f W

G !M2n�2n.f0; 1g/ sending g 7! g:MC , where MC is the adjacency matrix of C and g:MC is the
adjacency matrix of g:C . Then clearly f .g/ D f .g0/ if and only if g; g0 are in the same coset of the
automorphism group of C .

However, there have been demonstrated obstacles to this working: Moore, Russell, and Schulman
(2005) showed that the hidden subgroup problem for arbitrary subgroups of Sn cannot be solved
via “strong Fourier sampling”, which is the form of algorithm we’ve used so far (i.e., preparing a
superposition of inputes, applying the map f , taking a Fourier transform, and then measuring).
Thus, we’d need a new kind of algorithm, which depends on further entanglement between the
different prepared states.

Similarly, a solution to the hidden subgroup problem for Dn (the dihedral grup) would solve
the “shortest vector problem”, where we’re given a basis for a vector space and a norm, as well as a
lattice, and we’re to find the shortest nonzero vector in the lattice.

Now, we sketch the beginning of an algorithm; note the strong resemblance to Simon’s algorithm
and Shor’s algorithm. We first prepare a uniform superposition

1p
jGj

X
g2G

jgij0i;

then apply the function f to get
1p
jGj

X
g2G

jgijf .g/i;

13

We then measure the second register, obtaining some jf .g0/i and collapsing the first to a superposition
over some coset of H :

1p
jH j

X
h2H

jg0 C hijf .g0/i;

Now, the states present have some information we want (they’re the sum over a coset of H), but
the offset prevents us from analyzing H on its own. So we want to get rid of it; we’ll sketch how to
solve this in the abelian case. It turns out the crucial ingredient making this case tractable is the
representation theory of abelian groups:

Recall that an abelian groupG has jGjmany irreducible representations, and each is 1-dimensional.
(Quick recap: a representation of G is just a homomorphism G to the automorphisms of some vector

space, i.e., a group action of G on a vector space.) Let yG D f�1; : : : ; �jGjg be the set of irreducible
characters of G (the character of a 1-dimensional representation is just a map G ! S1).

Now, we’ll define an analogue of the quantum fourier transform: Define new vectors by

j�li D
1

jGj

X
g2G

�l .g/jgi:

You can check that this is actually again a basis for the vector space.
Define the Fourier transform FG for G as the (unitary!) map FG.j�gi/ D g (note this depends

on fixing some identification of G and yG).
As an example, note that for Z=NZ the irreducible representation’s values are given by

�k.j / D e
2�ijk=N ;

and

j�ki D
1
p
N

N�1X
jD0

e2�ijk=N jj i;

which looks exactly like the states in Shor’s algorithm.
For .Z=2Z/n, the corresponding quantum fourier transform is just the n-bit Hadamard!
Now, we apply FG to this state. First of all, it turns out the amplitudes of the states in

1p
jH j

X
h2H

jg0 C hi

and
1p
jH j

X
h2H

jhi

are the same, up to phase factors!
Thus if we measure at this point, before introducing further entanglement, all the observation

probabilities are equal. This, of course, is exactly the point of the Fourier transform, in that it
removes the “random” offset by g0; it turns translation into multiplication by a complex phase, and
then quantum mechanics ensures that this doesn’t affect measurement probabilities.

But what are the probabilities then? We won’t show the details, but it turns out

FG

�
1p
jH j

X
h2H

jhi

�
D

1p
jGjjH j

X
g2G

�X
h2H

�g.h/

�
jgi

But then the orthogonality of irreducible representations of H implies that�X
h2H

�g.h/

�
D 0

unless �g jH is the trivial representation. Thus, if we observe some jgi, we know that �g jH is
the trivial representation. If r generates K alone, then this is equivalent to �g.r/ D 1. Thus, by

14

observing the g that we observe, and checking for which r 2 G we have �g.r/ D 1, we can gather
evidence about elements r 2 K.

This is the end of the quantum computational part of the algorithm; the rest of the algorithm
depends on using the information about the particular group in question to turn this information
into information about the generators of H , and this is specific to the group in question (e.g., the
coprimality step in Shor’s algorithm).

Grover’s algorithm

Grover’s algorithm searches an unordered list of N D 2n items and returns an item satisfying some
criterion. We model this as looking at some x 2 f0; 1gN , and we’ll assume we have a quantum
oracle for x. We want to find some xi such that xi D 1. Clearly, any classical algorithm must take
O.N/ queries; in contrast, we can do so with a quantum oracle in O.

p
N/ queries (with some high

probability of success, which does not grow with N). Say that t is the number of xi equal to 1; we’ll
assume t << N .

So, each query takes 2n Hadamards, a query, and O.n/ from the phase shift, hence overall O.n/,
and we’re performing O.

p
N/ D O.2n=2/ iterates, so the overall runtime is O.2n=2n/ D O.

p
N logN/.

The algorithm works as follows: We’ll have an n-qubit circuit. recall the signed quantum query
Ox;˙ which maps jii 7! .�1/xi jii. Define a unitary map

R D

0BBB@
1

�1

�1
: : :

1CCCA
That is, R puts a phase of �1 on everything basis state except j0ni (this can be efficiently constructed
from elementary gates). Define the Grover iterate as the unitary map

F D H˝nRH˝nOx;˙

That is, we query the oracle, apply the n-bit Hadamard, then the map R, then apply the Hadamard
again.

Our algorithm will first prepare a uniform superposition over all n-bit strings (again, via the
n-bit Hadamard), and then apply the Grover iterate some number of times, and we’ll then measure
the result.

Now, we’ll analyze what’s going on; we’ll see that by the repeated iterates we’re “concentrating”
amplitude in the states jii for which xi D 1.

Define

jGi D
1
p
t

X
i WxiD1

jii

and

jBi D
1

p
t � n

X
i WxiD0

jii:

Thus the goal is to concentrate amplitude in jGi. Now, let

jU i D
1
p
N

X
i

jii D

r
t

N
jGi C

r
N � t

N
jBi:

Let � D arcsin
p
t=N . Then we can writer

t

N
jGi C

r
N � t

N
jBi D sin.�/jGi C cos.�/jBi:

Now, consider the two-dimensional space spanned by jBi and jGi, which we think of as orthogonal
vectors. First, consider Ox;˙: this fixes all the states for which xi D 0 and negates the rest, so it
maps G 7! �G and B 7! B; thus Ox;˙ is a reflection across B.

15

Now consider H˝nRH˝n; we can write R D 2P �I , where P is the projection to j0ni (in physics
we’d write P D j0nih0nj); then

H˝nRH˝n D 2H˝nPH˝n � I:

Now, consider H˝nPH˝njii; the coefficient of j0ni is always 1=
p
N in H˝njii, so this is just

.1=
p
N/H˝nj0ni D .1=

p
N/U .

Thus, we have that .H˝nPH˝n/U D U and if V 2 spanU? then H˝nPH˝UV D 0 (since
we’ll have an even number of negative signs). Thus H˝nPH˝n is projection to spanU , thus
2H˝nPH˝n � I is reflection across U .

Thus the Grover iterate is actually two reflections: the first across B and the second across U .
Let’s analyze what the Grover iterate does to

sin.�/jGi C cos.�/jBi:

(Draw picture)

Thus each Grover iterate increases the angle by 2� . Thus after k iterations the state will be

sin
�
.2k C 1/�

�
jGi C cos

�
.2k C 1/�

�
jBi:

Thus the probability of measuring a good state after k iterations is

Pk D sin
�
.2k C 1/�

�2
Thus, we want to pick some k close to K D �=.4�/ � 1=2 to maximize this amplitude. We can of
course choose jk �Kj � 1=2. We have

1 � Pk D cos..2k C 1/�/2 D cos..2K C 1/� C 2.k �K/�/2

D cos..2K C 1/� C 2.k �K/�/2 D cos.�=2C 2.k �K/�/2 D sin.2.k �K/�/2 � sin.�/2 D t=N

(since we picked K such that .2K C 1/� D �=2)
Note that k � �=.4�/ D �=4

p
N=t 2 O.

p
N/. Note also some slightly odd behavior; as would be

intuitively true, k decreases with t (the more correct solutions, the quicker the algorithm!). However,
using the above analysis, the error probability also increases with t !

Do note that we picked k using knowledge of � , which depends in turn on knowing how many
solutions we expect; if we increase k too much, then the success probability goes down again! You
can, however, modify the algorithm to “search” over k, obtaining a high probability of finding a
solution without affecting the final run-speed too much.

Amplitude amplification

Note that we can actually use this exact same idea in a more general setting. Assume we have some
function � W Z! f0; 1g. We want to find some z 2 Z with �.z/ D 1. Assume we have a quantum
oracle jxi 7! .�1/f .x/jxi. Say also we have a algorithm A that returns a quantum state with a
probability p of finding a solution when applied to the starting state j0ni. Classically, we’d need

16

to run A 1=p times to find a solution. However, we can use amplitude amplification to run it only
O.1=

p
p/ times.

The analysis is essentially the same: let U D Aj0i. Then repeatedly apply O� (reflect through

jBi) and ARA (reflect through U) O.1=
p
N/ times, and then measure; the above analysis goes

through with � D arcsin.
p
p/.

The analogue here is the Hadamard transform is a “search algorithm” with probability t=N for
the unordered search, since it returns a uniform superposition of all states.

References

[1] Aaronson, S., “Quantum computing since Democritus”, Cambridge University Press, 2013

[2] Bacon, D., CSE 599d: Quantum computing, Shor’s algorithm, 2006, https://courses.
cs.washington.edu/courses/cse599d/06wi/lecturenotes11.pdf

[3] Joszsa, R., Quantum factoring, discrete logarithms and the hidden subgroup problem, 2000,
arXiv:quant-ph/0012084

[4] Lomont, C., The Hidden Subgroup Problem—Review and Open Problems, 2004, arXiv:quant-
ph/0411037

[5] Nielsen, M. and Chuang, I., “Quantum Computation and Quantum Information”, Cambridge
University Press, 2001

[6] Shor, P., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer, SIAM Journal on Computing 26, no. 5, 1997, p. 1484-1509.

[7] de Wolf, R., Quantum computing: Lecture notes, 2011, http://homepages.cwi.nl/�rdewolf/
qcnotes.pdf

17

