
The Fundamental Theorem of Calculus for Line Integrals

What to know:

1. Be able to state the FTC for conservative vector fields.

2. Know that line integrals of conservative vector fields only depend on initial and terminal
point of the path, and are 0 along closed paths.

3. Be able to determine if a set is simply connected by looking at a picture.

4. Be able to check if a vector field defined on a subset of R2 is conservative.

5. Be able to find a potential function for a conservative vector field and use it to compute line
integrals.

Recall from Math 125 that the Fundamental Theorem of Calculus was a tool that related the
integral of the derivative of a function over an interval with its values at the endpoints:∫ b

a

f ′(x)dx = f(b)− f(a) (1)

Our goal is to generalize this for line integrals of vector fields. Suppose ~F (x, y) = ∇f(x, y) is
a conservative vector field on a domain D, and a curve c(t) = 〈x(t), y(t)〉, for t ∈ [a, b], contained
in D. Then, we may write∫

c

~F · d~r =

∫
c

∇f · d~r

=

∫ b

a

fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)dt

=

∫ b

a

d

dt
(f(~r(t))dt

=f(c(b))− f(c(a)),

using the chain rule and the FTC.
This gives us our theorem:

Theorem 1. Let c(t) = 〈x(t), y(t)〉, t ∈ [a, b] be a piecewise smooth curve in a domain D and
~F = ∇f a conservative vector field on D. Then∫

c

~F · d~r = f(c(b))− f(c(a)). (2)

The same theorem holds for curves in R3 as well.

Example 1. Find the work produced by the gravitational force

~F (x, y, z) = − mMG

(x2 + y2 + z2)3/2
〈x, y, z〉

between an object of mass M at the origin and an object of mass m at (x, y, z), while the latter is
moving along the path c(t) = 〈sin(t), cos(t), t/2π〉, t ∈ [0, 2π].
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Solution. Recall that the gravitational vector field is conservative and f(x, y, z) =
mMG

(x2 + y2 + z2)1/2

is a potential function for it. So, by FTC,∫
c

~F · d~r =f(c(b))− f(c(a))

=f(0, 1, 1)− f(0, 1, 0)

=
mMG√

2
− mMG

1

Remarks: Look at the right hand side of (2): c doesn’t appear, only its initial and terminal
points. Therefore, for conservative vector fields, the line integral does not depend on the
path, only on its initial and terminal point. Stating this more formally, if ~F is a conservative
vector field in a domain D and c1, c2 are two curves in D so that c1(a) = c2(a) and c1(b) = c2(b)
then ∫

c1

~F · d~r =

∫
c2

~F · d~r.

In addition, if the path is closed (that is, c(a) = c(b)), then the integral of a conservative
vector field is 0! This is the justification for calling a vector field conservative: the energy is
conserved along closed paths: that is, whatever energy the force gives to an object moving inside
a closed path, it takes it back; it can’t be providing energy all the time! In the example of the
gravitational vector field, think of when you jump: gravity gives you potential energy while you
are ascending, but you lose it while descending. In contrast to that, friction is not conservative:
it only removes energy from a moving object without ever giving any of it back.

Figure 1: Which of the two vector fields is more likely to be conservative?

Why is the property of being conservative useful? Because if we have a conservative field and
want to compute the line integral along a path we can make our lives easier by using one of the
following two ideas (mainly the second one):

1. integrate over a very simple path connecting the endpoints of the path, such as a line
segment; it doesn’t matter what we choose, we should find the same answer. For instance,
in the previous example you could also integrate ~F over the line segment connecting (0, 1, 0)
and (0, 1, 1).

2. more importantly, find a potential function and use the FTC.
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How can we tell if a vector field is conservative?

In your first calculus courses, you might remember that once we had a continuous function g,
we could always find a function h so that h′ = g, called an antiderivative, and we did that by
integrating, i.e. setting

h(x) =

∫ x

a

g(t)dt.

Question: Is it possible to do something analogous for two or three dimensions, that is, once we
have a continuous or differentiable vector field, can we “integrate” it and find a potential function?
The answer is sometimes.

Suppose we have a vector field

~F (x, y) = 〈P (x, y), Q(x, y)〉

defined on D ⊂ R2, where p and Q are continuously differentiable. Then, if we assume that f(x, y)
is a potential function, we’d have

P (x, y) =fx(x, y)

Q(x, y) =fy(x, y)

Differentiating the first equation with respect to y and the second with respect to x, we find

∂P

∂y
(x, y) =

∂Q

∂x
(x, y) for all (x, y) ∈ D,

by Clairaut’s theorem. So we have the following theorem:

Theorem 2. If ~F (x, y) = 〈P (x, y), Q(x, y)〉, defined on D ⊂ R2, where p and Q are continuously
differentiable, is a conservative vector field, then

∂P

∂y
(x, y) =

∂Q

∂x
(x, y) for all (x, y) ∈ D

Remark: Here it’s important that we are doing this in 2 dimensions, it looks different in 3!
So, if we are given a vector field on a domain D and ∂P

∂y
(x, y) 6= ∂Q

∂x
(x, y) even at one point in

D, ~F is not conservative! That is, this theorem can tell that a vector field is not conservative, if
∂P
∂y

(x, y) 6= ∂Q
∂x

(x, y) somewhere, but it doesn’t say much about whether it is.
Question: Can we say that the converse is true? That is, if we know that

∂P

∂y
(x, y) =

∂Q

∂x
(x, y) for all (x, y) ∈ D

does this tell us that the vector field is conservative? Do the following exercise:

Exercise 1. Let ~F (x, y) = 〈 −y
x2+y2

, x
x2+y2

〉 = 〈P (x, y), Q(x, y)〉, defined on R2\{(0, 0)} (the plane

without the origin).

1. Compute ∂P
∂y

and ∂Q
∂x

on D.

2. Compute
∫
c
~F · d~r, where c(t) = (cos(t), sin(t)), t ∈ [0, 2π] (the unit circle).
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If you did the previous exercise, you’d find that the integral over a closed path is not zero. The
reason why in this case ∂P

∂y
(x, y) = ∂Q

∂x
(x, y) on D does not imply that ~F has a potential function

is that the domain has a hole in the middle.

Definition 1. (A bit informal) A domain D ⊂ R2 that consists of one piece and has no holes is
called simply connected.

Remark: This definition doesn’t work in dimensions ≥ 3: it is a bit more complicated then.

We have the following:

Theorem 3. If ~F (x, y) = 〈P (x, y), Q(x, y)〉, defined on a simply connected domain D ⊂ R2,
where P and Q are continuously differentiable and

∂P

∂y
(x, y) =

∂Q

∂x
(x, y) for all (x, y) ∈ D

then there exists a potential function f for ~F on D, that is, ~F = ∇f on D.

Remark: Again, this theorem holds as is in 2 dimensions only!

How do we find a potential function once we know it exists?

Once we are given a vector field ~F (x, y) = 〈P (x, y), Q(x, y)〉 in D ⊂ R2, here are the steps we
take:

1. Check that ∂P
∂y

(x, y) = ∂Q
∂x

(x, y) for all (x, y) ∈ D and D is simply connected, to make sure
the potential function exists.

2. Integrate P with respect to x to find f(x, y) =
∫
P (x, y)dx+ g(y).

3. Differentiate the result with respect to y, set ∂f
∂y

= Q.

4. Integrate with respect to y to determine g.

Let’s see how this works in an example:

Example 2. Let ~F (x, y) = 〈2xy, x2 + 6y2〉 on R2. Determine if ~F is conservative and find a
potential function, if it is.
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Solution. We set ~F (x, y) = 〈P (x, y), Q(x, y)〉 and find that

∂P

∂y
=

∂

∂y
(2xy) = 2x

∂Q

∂x
=

∂

∂x
(x2 + 6y2) = 2x

so, since R2 is simply connected, ~F is conservative. Let’s find a potential function, call it f . We
need ~F = ∇f , so

fx = 2xy (3)

and

fy = x2 + 6y2. (4)

Then integrating the first one with respect to x, we find

f(x, y) = x2y + φ(y).

This is saying that the constant of integration with respect to x doesn’t have a reason to not
depend on y! Therefore, we have to think of it as a function of y.

To make use of (4), we differentiate with respect to y:

fy = x2 + φ′(y). (5)

So, using (4),
x2 + φ′(y) = x2 + 6y2

and we may finally integrate with respect to y and find

φ(y) = 2y3 + c,

and therefore
f(x, y) = x2y + 2y3 + c.

Finding potential functions in R3

The above discussion doesn’t give information about determining whether a vector field in R3 is
conservative. We will see such a criterion in the sections to come.

Here’s how we find a potential function for a vector field on a subset of R3 once it is given that
it is conservative.

Example 3. It is known that ~F (x, y, z) = 〈2x, 6zy2, 2y3 + 2〉 is conservative. Find a potential
function f for it.

Solution. Set

P (x, y, z) =2x (6)

Q(x, y, z) =6zy2 (7)

R(x, y, z) =2y3 + 2. (8)
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Then fx = P ⇒ fx = 2x⇒ f(x, y, z) = x2 + g(y, z), for some g(y, z). Then fy = gy, so

gy = Q = 6zy2.

This gives
g(y, z) = 2zy3 + h(z).

So
f(x, y, z) = x2 + 2zy3 + h(z)⇒ fz = 2y3 + h′(z).

Finally, fz = R = 2y3 + 2 means h′(z) = 2⇒ h(z) = 2z + c. Therefore,

f(x, y, z) = x2 + 2zy3 + 2z + c.

An optional remark about Exercise 1

In Exercise 1, you should have found that ∂P
∂y

= ∂Q
∂x

on D = R2\{(0, 0)}. As we saw, we can’t

find a potential function for ~F on D, since this would have to imply that the line integral over
the unit circle is 0. However, we could still restrict our interest in any simply connected subset
of R2\{(0, 0)} and find a potential function there (for example, you could take a disk of radius 1
centered at (2,0)).

You can follow the procdure described before for computing potential functions, and find that
in any such domain a potential function for ~F is f(x, y) = arctan( y

x
), which looks more familiar

in polar coordinates: f(ρ, θ) = θ!. This function can be defined to be differentiable in any simply
connected subset of D, but not everywhere on D: after completing a full rotation, the angle θ has
jumped by 2π and therefore can’t be continuous!.
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