
Surface Integrals

What to know:

1. Be able to set up and compute surface integrals of scalar functions.

2. Know that surface integrals of scalar function don’t depend on the orientation of the surface.

3. Be able to set up an compute surface integrals of vector fields, being careful about orienta-
tions.

In this section we’ll make sense of integrals over surfaces. In a sense, the content of this
section is very analogous to the one discussing line integrals, except here we’ll be working with
two dimensional objects instead of one dimensional.

Recall that when we talked about line integrals, some of them depended on the parameteriza-
tion of the curve, and more specifically on the direction the curve was transversed, whereas others
didn’t. It’s therefore natural to expect that we might have to deal with some similar behavior
when discussing surface integrals, except in this two dimensional setting we are going to use the
concept of orientation discussed in the previous section.

Surface integrals of scalar functions

You might remember that when we discussed line integrals, the main motivation for them was the
fact that we wanted to use them in order to compute the area of a fence or curtain above a curve
on the plane, but we also said that they can be used to calculate the mass of a wire: If a wire lies
on the curve c(t) in R3 and its density at the point (x, y, z) is ρ(x, y, z) then its mass is given by

m =

∫
c

ρ(x, y, z)ds.

Now we will define integrals on surfaces, so that we can compute the mass of a piece of
aluminum foil with non constant density function folded in R3.

Figure 1: A nicely folded piece of aluminum foil

Definition 1. Suppose S is a parametric surface in R3 with parametrization ~r(u, v), (u, v) ∈ D
and f(x, y, z) is a continuous function on S. Then we define the surface integral of f over S
to be ∫∫

S

f(x, y, z)dS :=

∫∫
D

f(~r(u, v))|~ru × ~rv(u, v)|dA.
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Remarks:

1. As you might remember from a couple of sections ago, we denoted dS := |~ru×~rv|dA, so the
above notation makes sense.

2. The mass of a piece of aluminum foil lying on the surface S with density function ρ(x, y, z)
is given by the formula

m =

∫∫
S

ρ(x, y, z)dS.

Example 1. Find the mass of a piece of aluminum foil occupying the surface z = x2 + y2, z ≤ 4,
if it has density function ρ(x, y, z) = z√

4z+1
.

Solution.
1st Way: We will parametrize the paraboloid z = x2 + y2 as a surface of revolution, namely we
let

~r(u, v) = 〈
√
v cos(u),

√
v sin(u), v〉, (u, v) ∈ [0, 2π]× [0, 4].

We find
~ru = 〈−

√
v sin(u),

√
v cos(u), 0〉,

~rv = 〈 1

2
√

2
cos(u),

1

2
√
v

sin(u), 1〉

and therefore

~ru × ~rv(u, v) = 〈
√
v cos(u),

√
v sin(u),−1

2
〉.

Note that the z coordinate is negative, so this corresponds to a downward orientation.
Then we find

|~ru × ~rv(u, v)| =
√
v +

1

4

and finally

m =

∫ 2

0

π

∫ 4

0

v√
4v + 1

√
v +

1

4
dvdu = · · · = 8π.

2nd Way: We parametrize the paraboloid as a graph. We write

~r(u, v) = 〈u, v, u2 + v2〉, (u, v) ∈ D.

To find D, we intersect z = x2 + y2, z = 4 and find

D = {(u, v) : u2 + v2 ≤ 4}.

Then, following a similar procedure, we find ~r = 〈1, 0, 2u〉, ~r = 〈0, 1, 2v〉 and

~ru × ~rv = 〈−2u,−2v, 1〉,

therefore
|~ru × ~rv(u, v)| =

√
4u2 + 4v2 + 1.

Note that the orientation given by ~ru × ~rv now upward.
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Finally, we find

m =

∫∫
D

u2 + v2√
4(u2 + v2) + 1

√
4u2 + 4v2 + 1dA = · · · = 8π

using polar coordinates.

Note that even we used two different parametrizations for which ~ru × ~rv gives different orien-
tations, and still found the same result.

We have the following:
Surface integrals of scalar functions do not depend on the orientation.

Another useful formula for surface integrals of scalar functions when the surface is the
graph of a function g(u, v), for (u, v) ∈ D is∫∫

S

fdS =

∫∫
D

f(u, v, g(u, v))

√(
∂g

∂u

)2

+

(
∂g

∂v

)2

+ 1dA

Surface integrals of vector fields

A fairly intuitive motivation for defining surface integrals of vector fields is the situation when
we’d like to understand how to find the mass of fluid passing through a fishing net, in a certain
direction, in unit time.

Let’s look at a special case when we have a fishing net in the shape of a rectangle of area A
with unit normal vector ~n pointing towards our preferred direction, and suppose that our fluid
has density ρ and constant velocity ~v near the fishing net. If the fishing net were perpendicular
to the water stream, like the one on the left, the mass of fluid per unit time would be

m = ρ|~v|A,

but if it were not, like the one in the middle, we’d have to take into account that we only care
about the component of the fluid stream that crosses the net orthogonally. We would do this by
projecting the velocity vector field in the direction perpendicular to the net (the direction of the
blue vector in the picture), that is, finding the dot product with ~n, and we’d have

m = ρ~v · ~nA.

What if the fishing net were occupying a more complicated surface, like the one on the right,
and the velocity of the fluid weren’t constant? A reasonable thing to do would be to break it into
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small pieces that look like rectangles, and where the velocity of the fluid is almost constant, work
as before, and then sum those small masses we found. Making the rectangles smaller and smaller
amounts to our procedure becoming an integration over the surface.

We end up defining:

Definition 2. Let S be an oriented parametric surface with orientation determined by the unit
normal vector field ~n and ~F be a continuous vector field. We define the surface integral of ~F
over S or flux of ~F across S to be∫∫

S

~F · d~S :=

∫∫
S

~F · ~ndS.

Remark: The right hand side is a surface integral of ~F ·~n, which is a scalar function. We saw
how to make sense of those in the first part of this section.

Let’s expand the definition and try to find an easier to use formula. Suppose S is parametrized

as ~r(u, v) and recall that ~n = ± ~ru × ~rv
|~ru × ~rv|

.

Then we have: ∫∫
S

~F · d~S =

∫∫
S

~F · ~ndS

=

∫∫
S

~F ·
(
± ~ru × ~rv
|~ru × ~rv|

)
dS

=

∫∫
D

~F (~r(u, v)) ·
(
± ~ru × ~rv
|~ru × ~rv|

)
|~ru × ~rv|dA

=±
∫∫

D

~F (~r(u, v)) · (~ru × ~rv(u, v))dA

So, we have:

• If the orientation is such that ~n =
~ru × ~rv
|~ru × ~rv|

, then

∫∫
S

~F · d~S =

∫∫
D

~F (~r(u, v)) · (~ru × ~rv(u, v))dA (1)

whereas:

• if the orientation is such that ~n = − ~ru × ~rv
|~ru × ~rv|

, then

∫∫
S

~F · d~S = −
∫∫

D

~F (~r(u, v)) · (~ru × ~rv(u, v))dA. (2)

Essentially, once we have a parametrization, the two formulas above save us from the trouble of
finding |~ru × ~rv|.

We can use the above to find an easier expression in the case when S is the graph of
a function g(u, v), (u, v) ∈ D. As observed in Example 1 the previous section, when we use
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the parametrization ~r(u, v) = 〈u, v, g(u, v)〉, then the vector field ~ru × ~rv(u, v) = 〈u, v, g(u, v)〉 =

〈−∂g
∂u
,−∂g

∂v
, 1〉 corresponds to upward orienation. So, suppose that ~F = 〈P,Q,R〉 and we find

that

• If the orientation of S is upward, then∫∫
S

~F · d~S =

∫∫
D

−∂g
∂u
P − ∂g

∂v
Q+RdA

whereas

• If the orientation of S is downward, then∫∫
S

~F · d~S = −
∫∫

D

−∂g
∂u
P − ∂g

∂v
Q+RdA

Example 2. Let S be the upper hemisphere of the unit sphere oriented downwards, and let
~F = 〈−y, x, 1〉. Compute the flux of curl ~F across S.

Solution. We compute curl ~F and find

curl ~F = 〈0, 0, 2〉.

Then, we parametrize the upper half sphere as

~r(u, v) = 〈sin(u) cos(v), sin(u) sin(v), cos(u)〉, for (u, v) ∈ [0,
π

2
]× [0, 2π].

We found in Example 2 of the previous section that

~ru × ~rv(u, v) = 〈sin2(u) cos(v), sin2(u) sin(v), cos(u) sin(u)〉

gives outward orientation in the case of the entire sphere, so it would give upward orientation in
the case of the upper hemisphere. Therefore, we work with formula (2) and find∫∫

S

curl ~F · d~S =−
∫ 2π

0

∫ π
2

0

〈0, 0, 2〉 · 〈sin2(u) cos(v), sin2(u) sin(v), cos(u) sin(u)〉dudv

=−
∫ 2π

0

∫ π
2

0

2 cos(u) sin(u)dudv

=− 2π,

using the double angle formula sin(2t) = 2 sin(t) cos(t) or a u substitution.

Remark: The negative sign is expected in the answer: The vector field curl ~F = 〈0, 0, 2〉 is
pointing upwards, which is in direction “opposite to the preferred one”, which is downward.
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