HOMEWORK 4 (DUE SEPTEMBER 21)

1. (a) Verify that the formulas for the dual, the direct sum, and the tensor product of representations of a Lie algebra \mathfrak{g}, as defined in class, indeed produce \mathfrak{g}-representations.
(b) For finite-dimensional \mathfrak{g}-modules V, W, identifying $V^{*} \otimes W \simeq \operatorname{Hom}(V, W)$ as vector spaces, endow $\operatorname{Hom}(V, W)$ with a \mathfrak{g}-module structure.
(c) For a \mathfrak{g}-module $\left(U, \rho_{U}\right)$, the space of \mathfrak{g}-invariants is defined as

$$
U^{\mathfrak{g}}:=\left\{u \in U \mid \rho_{U}(x)(u)=0 \forall x \in \mathfrak{g}\right\} .
$$

Verify that $\operatorname{Hom}(V, W)^{\mathfrak{g}}=\operatorname{Hom}_{\mathfrak{g}}(V, W)$, where the right-hand side denotes \mathfrak{g}-module homomorphisms, while the left-hand side denotes the space of \mathfrak{g}-invariants of the module from (b).
$\left(\mathrm{d}^{*}\right)$ For $\mathfrak{g}=\operatorname{Lie}(G)$, derive the formulas for the \mathfrak{g}-action on $V \oplus W, V^{*}$, and $V \otimes W$ from the corresponding constructions for G-modules (spell out the latter ones).
2. (a) Verify that an $\mathfrak{s l}_{2}$-module is the same as a quadruple $(V ; E, H, F)$ of a vector space V with three linear operators $E, F, H: V \rightarrow V$ satisfying

$$
[E, F]=H, \quad[H, E]=2 E, \quad[H, F]=-2 F .
$$

(b) Conclude that $V=\mathbb{C}[x, y]$ with $E=x \partial_{y}, H=x \partial_{x}-y \partial_{y}, F=y \partial_{x}$ give rise to $\mathfrak{s l}_{2} \curvearrowright V$.
3. Recall the definition of the character of any finite-dimensional $\mathfrak{s l}_{2}$-module $\left(V, \rho_{V}\right)$:

$$
\chi_{V}(z):=\operatorname{tr}_{V}\left(z^{h}\right)=\sum_{m} \operatorname{dim} V(m) z^{m}
$$

where $V(m)$ denotes a generalized eigenspace of $\rho_{V}(h)$ with eigenvalue $m \in \mathbb{C}$.
(a) Show that $V(m)$ coincides with the m-eigenspace of $\rho_{V}(h)$ and $V(m)=0$ unless $m \in \mathbb{Z}$.
(b) Prove the character formulas for the dual, the direct sum, and the tensor product:

$$
\chi_{V^{*}}(z)=\chi_{V}\left(z^{-1}\right), \quad \chi_{V \oplus W}(z)=\chi_{V}(z)+\chi_{W}(z), \quad \chi_{V \otimes W}(z)=\chi_{V}(z) \chi_{W}(z) .
$$

(c) Deduce the Clebsch-Gordan formula by matching the characters of both sides.
4. (a) For a $\mathbb{Z}_{\geq 0}$-filtered associative algebra \mathcal{A} show that if $\operatorname{gr} \mathcal{A}$ is a domain, then so is \mathcal{A}.
(b) For a linear map $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ of $\mathbb{Z}_{\geq 0}$-filtered associative algebras satisfying $\varphi\left(F_{k} \mathcal{A}\right) \subset F_{k} \mathcal{B}$, construct $\operatorname{gr} \varphi: \operatorname{gr} \mathcal{A} \rightarrow \operatorname{gr} \mathcal{B}$. Show that if $\operatorname{gr} \varphi$ is a vector space isomorphism, then so is φ.
5.(a) Verify that the Casimir element $C:=f e+e f+h^{2} / 2 \in U\left(\mathfrak{s l}_{2}\right)$ is central.
(b*) Prove that the center $Z U\left(\mathfrak{s l}_{2}\right)$ of $U\left(\mathfrak{s l}_{2}\right)$ is a polynomial algebra in C.
6. For any finite-dimensional complex vector space V, verify that V, all its symmetric powers $S^{n} V$, and all exterior powers $\Lambda^{m} V(m \leq \operatorname{dim} V)$ are irreducible representations of $G L(V)$.

