HOMEWORK 4 (DUE SEPTEMBER 21)

1. (a) Verify that the formulas for the dual, the direct sum, and the tensor product of representations of a Lie algebra \mathfrak{g} , as defined in class, indeed produce \mathfrak{g} -representations.

(b) For finite-dimensional \mathfrak{g} -modules V, W, identifying $V^* \otimes W \simeq \operatorname{Hom}(V, W)$ as vector spaces, endow $\operatorname{Hom}(V, W)$ with a \mathfrak{g} -module structure.

(c) For a g-module (U, ρ_U) , the space of g-invariants is defined as

$$U^{\mathfrak{g}} := \{ u \in U \mid \rho_U(x)(u) = 0 \,\,\forall \, x \in \mathfrak{g} \}$$

Verify that $\operatorname{Hom}(V, W)^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(V, W)$, where the right-hand side denotes \mathfrak{g} -module homomorphisms, while the left-hand side denotes the space of \mathfrak{g} -invariants of the module from (b). (d*) For $\mathfrak{g} = Lie(G)$, derive the formulas for the \mathfrak{g} -action on $V \oplus W$, V^* , and $V \otimes W$ from the corresponding constructions for G-modules (spell out the latter ones).

2. (a) Verify that an \mathfrak{sl}_2 -module is the same as a quadruple (V; E, H, F) of a vector space V with three linear operators $E, F, H: V \to V$ satisfying

$$[E, F] = H$$
, $[H, E] = 2E$, $[H, F] = -2F$.

(b) Conclude that $V = \mathbb{C}[x, y]$ with $E = x\partial_y, H = x\partial_x - y\partial_y, F = y\partial_x$ give rise to $\mathfrak{sl}_2 \frown V$.

3. Recall the definition of the **character** of any finite-dimensional \mathfrak{sl}_2 -module (V, ρ_V) :

$$\chi_V(z) := tr_V(z^h) = \sum_m \dim V(m) \, z^m$$

where V(m) denotes a generalized eigenspace of $\rho_V(h)$ with eigenvalue $m \in \mathbb{C}$.

- (a) Show that V(m) coincides with the *m*-eigenspace of $\rho_V(h)$ and V(m) = 0 unless $m \in \mathbb{Z}$.
- (b) Prove the character formulas for the dual, the direct sum, and the tensor product:

$$\chi_{V^*}(z) = \chi_V(z^{-1}), \qquad \chi_{V \oplus W}(z) = \chi_V(z) + \chi_W(z), \qquad \chi_{V \otimes W}(z) = \chi_V(z)\chi_W(z).$$

(c) Deduce the Clebsch-Gordan formula by matching the characters of both sides.

4. (a) For a $\mathbb{Z}_{\geq 0}$ -filtered associative algebra \mathcal{A} show that if $\operatorname{gr} \mathcal{A}$ is a domain, then so is \mathcal{A} . (b) For a linear map $\varphi \colon \mathcal{A} \to \mathcal{B}$ of $\mathbb{Z}_{\geq 0}$ -filtered associative algebras satisfying $\varphi(F_k \mathcal{A}) \subset F_k \mathcal{B}$, construct $\operatorname{gr} \varphi \colon \operatorname{gr} \mathcal{A} \to \operatorname{gr} \mathcal{B}$. Show that if $\operatorname{gr} \varphi$ is a vector space isomorphism, then so is φ .

5.(a) Verify that the Casimir element $C := fe + ef + h^2/2 \in U(\mathfrak{sl}_2)$ is central.

(b*) Prove that the center $ZU(\mathfrak{sl}_2)$ of $U(\mathfrak{sl}_2)$ is a polynomial algebra in C.

6. For any finite-dimensional complex vector space V, verify that V, all its symmetric powers $S^n V$, and all exterior powers $\Lambda^m V$ ($m \leq \dim V$) are irreducible representations of GL(V).