HOMEWORK 5 (DUE SEPTEMBER 28)

1. Verify that the symmetrization map $\sigma: S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ is a \mathfrak{g}-module homomorphism.
2. Let V be an n-dimensional vector space over a field \mathbf{k}, and $L(V)=\bigoplus_{m \geq 1} L_{m}(V)$ be the free Lie algebra generated by V with the natural $\mathbb{Z}_{>0}$-grading. Prove that the dimensions of its graded components $d_{m}(n):=\operatorname{dim}_{\mathbf{k}} L_{m}(V)$ are uniquely determined by (q-formal variable)

$$
\prod_{m \geq 1}\left(1-q^{m}\right)^{d_{m}(n)}=1-n q
$$

3. Recall the coproduct map Δ on either $T(\mathfrak{g})$ or $U(\mathfrak{g})$.
(a) Show that an element x is primitive if and only if $\exp (x)$ is group-like.
(b*) Show that if $\operatorname{char}(\mathbf{k})=0$, then any primitive element of $U(\mathfrak{g})$ is an element of $\mathfrak{g} \subset U(\mathfrak{g})$.
Hint: Reduce to $S(\mathfrak{g})$ and interpret Δ on $S(V)=\boldsymbol{k}\left[V^{*}\right]$ for an abelian Lie algebra V.
4. (a) Show that any subalgebra and quotient algebra of a solvable Lie algebra are solvable.
(b) Show that any subalgebra and quotient algebra of a nilpotent Lie algebra are nilpotent.
(c) If an ideal I of a Lie algebra \mathfrak{g} and the quotient \mathfrak{g} / I are solvable, is \mathfrak{g} solvable?
(d) If an ideal I of a Lie algebra \mathfrak{g} and the quotient \mathfrak{g} / I are nilpotent, is \mathfrak{g} nilpotent?
5. (a) Let \mathfrak{g} be a 3 -dimensional real Lie algebra with basis x, y, z and commutation relations

$$
[x, y]=z, \quad[x, z]=0, \quad[y, z]=0
$$

called the Heisenberg algebra. Construct explicitly the connected, simply-connected Lie group corresponding to \mathfrak{g}, and verify without using the Campbell-Hausdorff formula that $\exp (t x) \exp (s y)=\exp (t s z) \exp (s y) \exp (t x)$.
(b) Generalize the previous part to the Lie algebra $\mathfrak{g}=V \oplus \mathbb{R} z$, where V is a real vector space with a non-degenerate skew-symmetric form $\omega: V \otimes V \rightarrow \mathbb{R}$ and the commutation relations

$$
[u, v]=\omega(u, v) z, \quad[z, v]=0 \quad \forall u, v \in V .
$$

6. For a \mathfrak{g}-module (V, ρ), the space of coinvaraints is defined as

$$
V_{\mathfrak{g}}=V / \mathfrak{g} V \quad \text { where } \quad \mathfrak{g} V=\operatorname{span}\{\rho(x) v \mid x \in \mathfrak{g}, v \in V\} .
$$

(a) Prove that for completely reducible V, the composition $V^{\mathfrak{g}} \rightarrow V \rightarrow V_{\mathfrak{g}}$ is an isomorphism.
(b) Show that in general, it is not so.
7. Given a Lie algebra \mathfrak{h} and another Lie algebra \mathfrak{g} acting on \mathfrak{h} by derivations, one defines the semidirect product Lie algebra $\mathfrak{g} \ltimes \mathfrak{h}$ which is $\mathfrak{g} \oplus \mathfrak{h}$ as a vector space with the commutator

$$
\left[\left(x_{1}, h_{1}\right),\left(x_{2}, h_{2}\right)\right]=\left(\left[x_{1}, x_{2}\right],\left[h_{1}, h_{2}\right]+x_{1}\left(h_{2}\right)-x_{2}\left(h_{1}\right)\right) .
$$

Verify this indeed produces a Lie algebra.

