HOMEWORK 5 (DUE SEPTEMBER 28)

1. Verify that the symmetrization map $\sigma \colon S(\mathfrak{g}) \to U(\mathfrak{g})$ is a \mathfrak{g} -module homomorphism.

2. Let V be an n-dimensional vector space over a field **k**, and $L(V) = \bigoplus_{m \ge 1} L_m(V)$ be the free Lie algebra generated by V with the natural $\mathbb{Z}_{>0}$ -grading. Prove that the dimensions of its graded components $d_m(n) := \dim_{\mathbf{k}} L_m(V)$ are uniquely determined by (q-formal variable)

$$\prod_{m \ge 1} (1 - q^m)^{d_m(n)} = 1 - nq.$$

3. Recall the coproduct map Δ on either $T(\mathfrak{g})$ or $U(\mathfrak{g})$.

(a) Show that an element x is primitive if and only if exp(x) is group-like.

(b*) Show that if char(\mathbf{k}) = 0, then any primitive element of $U(\mathfrak{g})$ is an element of $\mathfrak{g} \subset U(\mathfrak{g})$. Hint: Reduce to $S(\mathfrak{g})$ and interpret Δ on $S(V) = \mathbf{k}[V^*]$ for an abelian Lie algebra V.

- 4. (a) Show that any subalgebra and quotient algebra of a solvable Lie algebra are solvable.
- (b) Show that any subalgebra and quotient algebra of a nilpotent Lie algebra are nilpotent.
- (c) If an ideal I of a Lie algebra \mathfrak{g} and the quotient \mathfrak{g}/I are solvable, is \mathfrak{g} solvable?
- (d) If an ideal I of a Lie algebra \mathfrak{g} and the quotient \mathfrak{g}/I are nilpotent, is \mathfrak{g} nilpotent?

5. (a) Let \mathfrak{g} be a 3-dimensional real Lie algebra with basis x, y, z and commutation relations [x, y] = z, [x, z] = 0, [y, z] = 0,

called the **Heisenberg algebra**. Construct explicitly the connected, simply-connected Lie group corresponding to \mathfrak{g} , and verify without using the Campbell–Hausdorff formula that $\exp(tx) \exp(sy) = \exp(tsz) \exp(sy) \exp(tx)$.

(b) Generalize the previous part to the Lie algebra $\mathfrak{g} = V \oplus \mathbb{R}z$, where V is a real vector space with a non-degenerate skew-symmetric form $\omega \colon V \otimes V \to \mathbb{R}$ and the commutation relations

$$[u,v] = \omega(u,v)z, \qquad [z,v] = 0 \qquad \forall \ u,v \in V.$$

6. For a \mathfrak{g} -module (V, ρ) , the space of **coinvaraints** is defined as

$$V_{\mathfrak{g}} = V/\mathfrak{g}V$$
 where $\mathfrak{g}V = \operatorname{span}\{\rho(x)v \mid x \in \mathfrak{g}, v \in V\}$.

(a) Prove that for completely reducible V, the composition $V^{\mathfrak{g}} \to V \to V_{\mathfrak{g}}$ is an isomorphism.

(b) Show that in general, it is not so.

7. Given a Lie algebra \mathfrak{h} and another Lie algebra \mathfrak{g} acting on \mathfrak{h} by derivations, one defines the **semidirect product** Lie algebra $\mathfrak{g} \ltimes \mathfrak{h}$ which is $\mathfrak{g} \oplus \mathfrak{h}$ as a vector space with the commutator

$$[(x_1, h_1), (x_2, h_2)] = ([x_1, x_2], [h_1, h_2] + x_1(h_2) - x_2(h_1)).$$

Verify this indeed produces a Lie algebra.