HOMEWORK 6 (DUE OCTOBER 5)

1. For $n_{1}, \ldots, n_{k} \in \mathbb{Z}_{>0}$, set $n:=n_{1}+\ldots+n_{k}$, and consider the parabolic subalgebra

$$
\mathfrak{g}=\left\{A \in \mathfrak{g l}(n) \mid A_{i j}=0 \text { for } j \leq n_{1}+\ldots+n_{s}<i \text { and any } 1 \leq s<k\right\}
$$

consisting of block upper triangular matrices with diagonal blocks of size $n_{1} \times n_{1}, \ldots, n_{k} \times n_{k}$.
(a) Find the radical $\operatorname{rad}(\mathfrak{g})$.
(b) Provide an example of the Levi decomposition for this \mathfrak{g}.
2. (a) Given a finite-dimensional \mathfrak{g}-module (V, ρ), verify that the following defines an action of \mathfrak{g} on the space Bil_{V} of all bilinear maps $V \times V \rightarrow \mathrm{k}$:

$$
(x B)(v, w)=-B(\rho(x) v, w)-B(v, \rho(x) w) \quad \forall x \in \mathfrak{g}, v, w \in V
$$

(b) Verify that $B \in \operatorname{Bil}_{V}^{\mathfrak{g}}$ iff the corresponding linear map is a \mathfrak{g}-module homomorphism:

$$
V \rightarrow V^{*} \quad \text { given by } \quad v \mapsto B(v,-)
$$

(c) If V is an irreducible \mathfrak{g}-module, show that $\operatorname{dim} \mathrm{Bil}_{V}^{\mathfrak{g}} \leq 1$.
(d) If $(V, \rho)=\left(\mathfrak{g}\right.$, ad) and $I \subset \mathfrak{g}$ is an ideal, then $I^{\perp}=\{x \in \mathfrak{g} \mid B(x, y)=0 \forall y \in I\}$ is an ideal (here, B is assumed to be a \mathfrak{g}-invariant form on \mathfrak{g}).
3. (a) For any filtration $0=F_{0} V \subset F_{1} V \subset \cdots \subset F_{N} V=V$ by \mathfrak{g}-submodules verify that

$$
B_{V}=\sum_{1 \leq k \leq N} B_{F_{k} V / F_{k-1} V}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathrm{k}
$$

(b) For an ideal $\mathfrak{a} \subset \mathfrak{g}$, verify the equality $K^{\mathfrak{a}}(x, y)=K^{\mathfrak{g}}(x, y)$ for any $x, y \in \mathfrak{a}$.
4. (a) Show that $\mathfrak{s p}_{2 n}, \mathfrak{u}_{n}, \mathfrak{s u}_{n}$ are reductive (finishing the proof of [Lecture 12, Theorem 1]).
(b) Verify that $\mathfrak{s l}_{n}(\mathrm{k}), \mathfrak{s o}_{n}(\mathrm{k}), \mathfrak{s p}_{2 n}(\mathrm{k}), \mathfrak{s u}_{n}$ are semisimple.
(c) Verify that $\mathfrak{g l}_{n}(\mathrm{k})=\mathrm{k} \cdot \operatorname{Id} \oplus \mathfrak{s l}_{n}(\mathrm{k})$ and $\mathfrak{u}_{n}=i \mathbb{R} \cdot \operatorname{Id} \oplus \mathfrak{s u}_{n}$.
5. Let V be a finite-dimensional complex vector space.
(a) Verify that a linear operator $A: V \rightarrow V$ is semisimple iff A is diagonalizable.
(b) Show that if $A: V \rightarrow V$ is semisimple and a subspace $V^{\prime} \subset V$ is A-stable, i.e. $A\left(V^{\prime}\right) \subset V^{\prime}$, then the corresponding linear operators $V^{\prime} \rightarrow V^{\prime}$ and $V / V^{\prime} \rightarrow V / V^{\prime}$ are also semisimple.
(c) Show that the sum of two commuting semisimple operators $V \rightarrow V$ is also semisimple.
(d) Show that the sum of two commuting nilpotent operators $V \rightarrow V$ is also nilpotent.
6. (a) Verify that if $A: V \rightarrow V$ is nilpotent, then $\operatorname{ad}(A): \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ is nilpotent.
(b) Prove part (c) of the Jordan decomposition ([Lecture 12, Theorem 4(c)]).

