HOMEWORK 7 (DUE OCTOBER 19)

1. Verify that a short exact sequence of \mathfrak{g} -modules

$$0 \longrightarrow V \longrightarrow U \longrightarrow W \longrightarrow 0$$

gives rise to an exact sequence $H^1(\mathfrak{g}, V) \to H^1(\mathfrak{g}, U) \to H^1(\mathfrak{g}, W)$ of vector spaces.

2. Show that an abstract Jordan decomposition in a Lie algebra \mathfrak{g} is unique when it exists if and only if the center of \mathfrak{g} is trivial (that is, $Z(\mathfrak{g}) = 0$).

3. (a) Classify all 2-dimensional Lie algebras over any field \mathbf{k} .

(b) Classify all finite-dimensional Lie algebras \mathfrak{g} for which dim $Z(\mathfrak{g}) = \dim \mathfrak{g} - 2$.

Hint: If dim $\mathfrak{g} = n$ show that either $\mathfrak{g} \simeq Ab_{n-3} \oplus \text{Heis}_3$ or $\mathfrak{g} \simeq Ab_{n-2} \oplus \mathfrak{a}$, where Ab_m denotes the abelian Lie algebra of dimension m, \mathfrak{a} is the non-abelian 2-dimensional Lie algebra from part (a), and Heis₃ is the Heisenberg algebra from [Homework 5, Problem 5(a)].

(c) Show that any non-abelian 3-dimensional nilpotent Lie algebra is isomorphic to the Heisenberg algebra Heis₃.

4. Consider the Heisenberg algebra Heis₃ and its representation on $\mathbf{k}[t]$ given by

$$x(f(t))=f'(t)\,,\quad y(f(t))=tf(t)\,,\quad z(f(t))=f(t)\qquad orall\,f(t)\in {f k}[t]\,.$$

If char(\mathbf{k}) = p > 0, show that $t^p \mathbf{k}[t]$ is a Heis₃-submodule of $\mathbf{k}[t]$. Verify that while Heis₃ is a solvable Lie algebra, its action on the quotient module $V = \mathbf{k}[t]/t^p \mathbf{k}[t]$ cannot be represented by upper triangular matrices in any basis.

5. Let **k** be an algebraically closed field of characteristic char(**k**) = 2, and consider the action ρ : Heis₃ $\sim V = \mathbf{k}[t]/t^2 \mathbf{k}[t]$ from the problem above. Verify that $V = V_{\lambda}$ for some function λ : Heis₃ $\rightarrow \mathbf{k}$, where V_{λ} is the common generalized eigenspace for Heis₃ with the eigenvalue λ :

 $V_{\lambda} = \left\{ v \in V \mid (\rho(x) - \lambda(x))^N v = 0 \ \forall N \gg 1 \text{ and all } x \in \text{Heis}_3 \right\}.$

Compute λ explicitly and show that λ is <u>not</u> a linear function on Heis₃.

6. (a) Show that all derivations of the 2-dimensional non-abelian Lie algebra are inner.

(b) Find all derivations of the Heisenberg algebra Heis₃. Show that not all of them are inner.