HOMEWORK 8 (DUE OCTOBER 26)

1. Let \mathfrak{g} be a semisimple Lie algebra with a non-degenerate invariant symmetric bilinear form (\cdot, \cdot), and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. For any root α of \mathfrak{g}, verify that the element

$$
h_{\alpha}=\frac{2}{(\alpha, \alpha)} H_{\alpha} \in \mathfrak{h}
$$

is independent of the pairing ([Lecture 16, Lemma 2(c)]).
2. Let \mathfrak{g} be a semisimple Lie algebra with a non-degenerate invariant symmetric bilinear form (\cdot, \cdot), and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. Let $R \subset \mathfrak{h}^{*}$ be the root system of \mathfrak{g}. Prove the following string property for any $\alpha, \beta \in R$:

$$
\{\beta+n \alpha \mid n \in \mathbb{Z}\} \cap(R \cup\{0\})=\{\beta-p \alpha, \beta-(p-1) \alpha, \ldots, \beta+(q-1) \alpha, \beta+q \alpha\}
$$

for some $p, q \in \mathbb{Z}_{\geq 0}$ satisfying $p-q=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$.
3. (a) Verify that $x \in \mathfrak{g l}_{n}(\mathbb{C})$ is strongly regular iff its eigenvalues are distinct.
$\left(\mathrm{b}^{*}\right)$ Find a criteria for $x \in \mathfrak{g l}_{n}(\mathbb{C})$ to be regular in terms of its Jordan normal form.
4. (a) Let $\mathfrak{h} \subset \mathfrak{g}$ be a subspace of diagonal matrices in $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbb{C})$. Verify that \mathfrak{h} is a Cartan subalgebra. Describe explicitly the root system $R \subset \mathfrak{h}^{*}$ and the corresponding root subspaces.
(b) Let $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$ be the symplectic Lie algebra realized as

$$
\mathfrak{g}=\left\{A \in \operatorname{Mat}_{2 n \times 2 n}(\mathbb{C}) \mid A J+J A^{t}=0\right\} \quad \text { with } \quad J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right),
$$

where $I_{n} \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ is the identity matrix. Let $\mathfrak{h} \subset \mathfrak{g}$ be a subspace of diagonal matrices. Verify that \mathfrak{h} is a Cartan subalgebra. Describe explicitly the root system $R \subset \mathfrak{h}^{*}$ and the corresponding root subspaces of \mathfrak{g}.
(c) Let $\mathfrak{g}=\mathfrak{s o}_{2 n}(\mathbb{C})$ be the orthogonal Lie algebra realized as

$$
\mathfrak{g}=\left\{A \in \operatorname{Mat}_{2 n \times 2 n}(\mathbb{C}) \mid A J+J A^{t}=0\right\} \quad \text { with } \quad J=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right) .
$$

Let $\mathfrak{h} \subset \mathfrak{g}$ be a subspace of diagonal matrices. Verify that \mathfrak{h} is a Cartan subalgebra. Describe explicitly the root system $R \subset \mathfrak{h}^{*}$ and the corresponding root subspaces of \mathfrak{g}.
(d) Let $\mathfrak{g}=\mathfrak{s o}_{2 n+1}(\mathbb{C})$ be the orthogonal Lie algebra realized as

$$
\mathfrak{g}=\left\{A \in \operatorname{Mat}_{(2 n+1) \times(2 n+1)}(\mathbb{C}) \mid A J+J A^{t}=0\right\} \quad \text { with } \quad J=\left(\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & 0 & I_{n} \\
0 & I_{n} & 0
\end{array}\right) .
$$

Let $\mathfrak{h} \subset \mathfrak{g}$ be a subspace of diagonal matrices. Verify that \mathfrak{h} is a Cartan subalgebra. Describe explicitly the root system $R \subset \mathfrak{h}^{*}$ and the corresponding root subspaces of \mathfrak{g}.
5. Let V be a 4 -dimensional complex vector space with a basis $e_{1}, e_{2}, e_{3}, e_{4}$.
(a) Define a bilinear form B on $W=\Lambda^{2} V$ via $w_{1} \wedge w_{2}=B\left(w_{1}, w_{2}\right) e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}$. Verify that B is a symmetric non-degenerate form on W and construct an orthonormal basis for B.
(b) Let $\mathfrak{g}=\left\{x \in \mathfrak{g l}(W) \mid B\left(x w_{1}, w_{2}\right)+B\left(w_{1}, x w_{2}\right)=0 \forall w_{1}, w_{2} \in W\right\}$. Show that $\mathfrak{g} \simeq \mathfrak{s o}{ }_{6}(\mathbb{C})$.
(c) Show that the form B is invariant under the natural action of $\mathfrak{s l}_{4}(\mathbb{C})$ on W.
(d) Using the above results, construct a Lie algebra isomorphism $\mathfrak{s l}_{4}(\mathbb{C}) \xrightarrow{\sim} \mathfrak{s o}_{6}(\mathbb{C})$.
6. Let \mathfrak{g} be a complex finite-dimensional Lie algebra which has a decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}
$$

where R is a finite subset of $\mathfrak{h}^{*} \backslash\{0\}, \mathfrak{h}$ is an abelian Lie subalgebra, and we have

$$
[h, x]=\alpha(h) x \quad \text { for any } \quad h \in \mathfrak{h}, x \in \mathfrak{g}_{\alpha}, \alpha \in R .
$$

Assume further that for any $\alpha \in R \cup\{0\}$, the Killing form of \mathfrak{g} gives rise to a non-degenerate pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \longrightarrow \mathbb{C}$.
Show that \mathfrak{g} is semisimple and \mathfrak{h} is its Cartan subalgebra.

