HOMEWORK 9 (DUE NOVEMBER 2)

1. Let $\left\{e_{i}\right\}_{i=1}^{n}$ be the standard orthonormal basis of \mathbb{R}^{n}. Verify that

$$
R:=\left\{ \pm e_{i}, \pm 2 e_{i} \mid 1 \leq i \leq n\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\}
$$

is a non-reduced root system in \mathbb{R}^{n} (the so-called $\mathbf{B C}_{n}$-type root system).
2. (a) Let $R \subset E$ be a root system. Verify that the set

$$
R^{\vee}:=\left\{\alpha^{\vee} \mid \alpha \in R\right\} \subset E^{*}
$$

is also a root system (called the dual root system of $R \subset E$), where the coroot $\alpha^{\vee} \in E^{*}$ is defined via

$$
\alpha^{\vee}(x)=\frac{2(\alpha, x)}{(\alpha, \alpha)} \quad \forall x \in E .
$$

(b) Verify that the root systems $\left(R^{\vee}\right)^{\vee} \subset\left(E^{*}\right)^{*}$ and $R \subset E$ are isomorphic.
(c) Let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset R$ be the set of simple roots of a reduced root system R with respect to a polarization given by $t \in E^{*}$. Verify that $\Pi^{\vee}:=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right\}$ is the set of simple roots of R^{\vee} with respect to the polarization given by $t^{\vee}=\pi^{-1}(t)$, where $\pi: E \rightarrow E^{*}$ is the isomorphism induced by the inner product.
3. (a) Given a collection of vectors $\left\{v_{i}\right\}_{i=1}^{n}$ in a Euclidean space E which satisfy:

- $\left(v_{i}, v_{j}\right) \leq 0$ for any $i \neq j$
- $t\left(v_{i}\right)>0$ for some $t \in E^{*}$ and all $1 \leq i \leq n$
prove that the vectors $\left\{v_{i}\right\}_{i=1}^{n}$ are linearly independent.
Hint: assuming we have a nontrivial linear combination of v_{i} 's equal to 0 , rearrange the terms so that $\sum_{i \in A} c_{i} v_{i}=\sum_{i \in B} c_{i} v_{i}$ for some disjoint subsets $A, B \subset\{1, \ldots, n\}$ with $c_{i}>0$. Show that $A, B \neq \emptyset$. Then compute the inner product of the left-hand and right-hand sides.
(b) Use (a) to show that the set of simple roots Π in a root system $R \subset E$ is a basis of E ([Lecture 19, Theorem 2]).

4. Let \mathfrak{h} be a Cartan subalgebra in a complex semisimple Lie algebra \mathfrak{g}. This naturally gives rise to a reduced root system $R \subset \mathfrak{h}_{\mathbb{R}}^{*}$ (see Propositions 1-2 of Lecture 19).
(a) For $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$ one gets the so-called \mathbf{C}_{n}-type root system [Homework 8, Problem 4(b)]

$$
R_{C_{n}}=\left\{ \pm 2 e_{i} \mid 1 \leq i \leq n\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \subset \mathbb{R}^{n} .
$$

Describe the simple roots $\Pi \subset R_{C_{n}}$ for the polarization given by $t \in\left(\mathbb{R}^{n}\right)^{*}$ such that

$$
t\left(e_{1}\right) \gg t\left(e_{2}\right) \gg \cdots \gg t\left(e_{n}\right)>0 .
$$

(b) For $\mathfrak{g}=\mathfrak{s o}_{2 n}(\mathbb{C})$ one gets the so-called \mathbf{D}_{n}-type root system [Homework 8, Problem 4(c)]

$$
R_{D_{n}}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \subset \mathbb{R}^{n}
$$

Describe the simple roots $\Pi \subset R_{D_{n}}$ for the polarization given by $t \in\left(\mathbb{R}^{n}\right)^{*}$ as in (a).
(c) For $\mathfrak{g}=\mathfrak{s o}_{2 n+1}(\mathbb{C})$ one gets the \mathbf{B}_{n}-type root system [Homework 8, Problem 4(d)]

$$
R_{B_{n}}=\left\{ \pm e_{i} \mid 1 \leq i \leq n\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \subset \mathbb{R}^{n}
$$

Describe the simple roots $\Pi \subset R_{B_{n}}$ for the polarization given by $t \in\left(\mathbb{R}^{n}\right)^{*}$ as in (a).
5. (a) The F_{4} root system $R_{F_{4}} \subset \mathbb{R}^{4}$ is defined as the union of the B_{4} root system $R_{B_{4}}$ and

$$
\pm \frac{1}{2} e_{1} \pm \frac{1}{2} e_{2} \pm \frac{1}{2} e_{3} \pm \frac{1}{2} e_{4} \in \mathbb{R}^{4}
$$

for all 16 choices of signs. Verify that it is a reduced root system. Describe the simple roots $\Pi \subset R_{F_{4}}$ for the polarization given by $t \in\left(\mathbb{R}^{4}\right)^{*}$ with $t\left(e_{1}\right) \gg t\left(e_{2}\right) \gg t\left(e_{3}\right) \gg t\left(e_{4}\right)>0$.
(b) The E_{8} root system $R_{E_{8}} \subset \mathbb{R}^{8}$ is the union of the root system $R_{D_{8}}$ and

$$
\frac{1}{2}(\underbrace{ \pm e_{1} \pm e_{2} \pm \cdots \pm e_{8}}_{\text {even number of }- \text { signs }}) \in \mathbb{R}^{8}
$$

(there are 128 of such vectors). Verify that it is a reduced root system. Describe the simple roots $\Pi \subset R_{E_{8}}$ for the polarization given by $t \in\left(\mathbb{R}^{8}\right)^{*}$ with $t\left(e_{1}\right) \gg \cdots \gg t\left(e_{8}\right)>0$.
(c) The E_{7} root system $R_{E_{7}}$ is defined as the intersection of $R_{E_{8}}$ with the hyperplane $\left\{\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{R}^{8} \mid x_{1}+x_{2}=0\right\}$ in \mathbb{R}^{8}. Verify that it is a reduced root system. Describe the simple roots $\Pi \subset R_{E_{7}}$ w.r.t. the polarization induced from (b).

Hint: The simple roots for $R_{E_{7}}$ form a subset of simple roots for $R_{E_{8}}$.
(d) The E_{6} root system $R_{E_{6}}$ is defined as the intersection of $R_{E_{8}}$ with the codimension two subspace $\left\{\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{R}^{8} \mid x_{1}+x_{2}=0, x_{2}-x_{3}=0\right\}$ in \mathbb{R}^{8}. Verify that it is a reduced root system. Describe the simple roots $\Pi \subset R_{E_{6}}$ w.r.t. the polarization induced from (b).

Hint: The simple roots for $R_{E_{6}}$ form a subset of simple roots for $R_{E_{7}}$.

As you will learn next week, any irreducible reduced root system is isomorphic to one of:

$$
A_{n}(n \geq 1), \quad B_{n}(n \geq 2), \quad C_{n}(n \geq 3), \quad D_{n}(n \geq 4), \quad E_{6}, \quad E_{7}, \quad E_{8}, \quad F_{4}, \quad G_{2}
$$

This also provides a complete classification of complex simple Lie algebras.

