HOMEWORK 10 (DUE NOVEMBER 9)

1. (a) Show that the assignment of a positive Weyl chamber to any polarization of a root system R provides a bijection between all polarizations $R=R_{+} \cup R_{-}$and all Weyl chambers. (b) Show that if two Weyl chambers C, C^{\prime} are separated by a hyperplane L_{α}, then $s_{\alpha}(C)=C^{\prime}$.
2. Let $Q \subset P$ be the root and weight lattices of an abstract rank r root system $R \subset E$. Pick a polarization $R=R_{+} \cup R_{-}$and let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset R_{+}$denote the set of simple roots.
(a) Show that the index $|P / Q|$ equals the determinant of the Cartan matrix $A=\left(\alpha_{i}^{\vee}\left(\alpha_{j}\right)\right)_{i, j=1}^{r}$.
(b) Compute the index $|P / Q|$ for the root systems of types $A_{r}, B_{r}, C_{r}, D_{r}$.
(c) Describe the quotient group P / Q explicitly for the root systems of types $A_{r}, B_{r}, C_{r}, D_{r}$.
3. (a) Let $w=s_{i_{1}} \cdots s_{i_{\ell}}$ be a reduced expression of $w \in W$. Show that then

$$
\left\{\alpha \in R_{+} \mid w(\alpha) \in R_{-}\right\}=\left\{\beta_{1}, \ldots, \beta_{\ell}\right\} \quad \text { with } \quad \beta_{k}=s_{i_{\ell}} \cdots s_{i_{k+1}}\left(\alpha_{i_{k}}\right)
$$

and

$$
\left\{\alpha \in R_{+} \mid w^{-1}(\alpha) \in R_{-}\right\}=\left\{\widetilde{\beta}_{1}, \ldots, \widetilde{\beta}_{\ell}\right\} \quad \text { with } \quad \widetilde{\beta}_{k}=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right) .
$$

(b) Suppose $s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right) \in R_{-}$. Show that $s_{i_{1}} \cdots s_{i_{k-1}} s_{i_{k}}$ is not a reduced expression.
4. Let w_{0} be the longest element of the Weyl group W. Show that for any $w \in W$, we have:

$$
\ell\left(w w_{0}\right)=\ell\left(w_{0} w\right)=\ell\left(w_{0}\right)-\ell(w) .
$$

5. (a) Verify that in the Weyl group $W \simeq S_{n}$ of the A_{n-1} type root system the longest element w_{0} is the permutation $w_{0}=(n n-1 \ldots 21)$.
(b) Describe explicitly the Weyl groups W for the root systems of types B_{r}, C_{r}, D_{r}.
(c) Describe explicitly the longest element $w_{0} \in W$ for the root systems from (b).
6. Given positive roots $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in R_{+}$such that $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$, verify that then

$$
\alpha^{\prime}=\alpha+\gamma \text { and } \beta^{\prime}=\beta-\gamma \quad \text { or } \quad \alpha^{\prime}=\beta+\gamma \text { and } \beta^{\prime}=\alpha-\gamma
$$

for some $\gamma \in R \cup\{0\}$.
7. Let $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}$ (with $N=\left|R_{+}\right|$) be a reduced decomposition of the longest element $w_{0} \in W$. By Problem 3 above, we have $R_{+}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}$ with $\beta_{k}=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)$. This gives a natural order on R_{+}via: $\beta_{i}<\beta_{j}$ iff $i<j$. Show that this order is convex:

$$
\forall \alpha<\beta \in R_{+} \quad \text { such that } \quad \alpha+\beta \in R_{+} \quad \text { we have } \alpha<\alpha+\beta<\beta .
$$

In fact, any convex order on R_{+}arises via a unique reduced decomposition of w_{0} in this way:

$$
\left\{\text { reduced decompositions of } w_{0} \in W\right\} \xrightarrow{\text { bijection }}\left\{\text { convex orders on } R_{+}\right\}
$$

