HOMEWORK 11 (DUE NOVEMBER 16)

1. (a) Verify that if two vertices of a Dynkin diagram are connected by a single edge, then the corresponding simple roots are in the same W-orbit.

(b) Show that for a reduced irreducible root system R, the Weyl group W acts transitively on the set of all roots of the same length.

2. Given any irreducible root system $R \subset E$, verify that E is an irreducible representation of the corresponding Weyl group W.

3. (a) Verify that the *classical* reduced root systems of types A_n, B_n, C_n, D_n (from Problem 4) of Homework 9) indeed have the same named Dynkin diagrams (as drawn in Lecture 22).

(b) Verify that the *exceptional* reduced root systems of types E_6, E_7, E_8, F_4, G_2 (see Problem 5 of Homework 9) indeed have the same named Dynkin diagrams (as drawn in Lecture 22).

4. Given a reduced root system $R \subset E$ with a polarization $R = R_+ \cup R_-$ and the set of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_r\} \subset R_+$, recall the element $\rho = \frac{1}{2} \sum_{\alpha \in R_+} \alpha = \sum_{i=1}^r \varpi_i \in E$ (see Lemma 2 of Lecture 21). Let $\rho^{\vee} \in E^*$ be such an element for the dual root system $R^{\vee} \subset E^*$.

(a) Compute ρ, ρ^{\vee} for the *classical* root systems of types A_n, B_n, C_n, D_n .

(b*) Compute ρ, ρ^{\vee} for the *exceptional* root systems of types E_6, E_7, E_8, F_4, G_2 .

5. Complete the proof of the Main Theorem from Lecture 22 by verifying that none of the following graphs can appear as a subgraph of a Dynkin diagram (see pictures in the notes):

- analogue of \widetilde{D}_n with some multiple edges
- analogue of D_n with some multiple edges
 \$\tilde{G}_2\$, D₄⁽³⁾ as well as their analogues with a multiple edge instead of the simple one
 \$\tilde{B}_n\$, A_{2n-1}⁽²⁾ as well as their analogues with one/two of their two "legs" being multiple
 \$\tilde{E}_6\$, \$\tilde{E}_7\$, \$\tilde{E}_8\$
 \$\tilde{C}_n\$, D_{n+1}⁽²⁾, A_{2n}⁽²⁾
 \$\tilde{F}_4\$, E₆⁽²⁾

Hint: Verify that in each of the above cases the corresponding Cartan matrix is degenerate, or alternatively, verify that the symmetrized Cartan matrix is not positive definite.

6. Let G be a connected \mathbb{C} Lie group such that $\mathfrak{g} = \operatorname{Lie}(G)$ is semisimple. Fix a root decomposition $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$. For any $\alpha \in R$, consider the embedding $\iota_{\alpha} \colon \mathfrak{sl}(2, \mathbb{C}) \hookrightarrow \mathfrak{g}$ [Lecture 16, Lemma 2], and lift it to $\iota_{\alpha} \colon SL(2,\mathbb{C}) \to G$. Define $S_{\alpha} := \iota_{\alpha}(\exp(f_{\alpha})\exp(-e_{\alpha})\exp(f_{\alpha})) \in G$. Show that the dual of the adjoint action of S_{α} on \mathfrak{g}^* preserves \mathfrak{h}^* , and $\mathrm{Ad}^*(S_{\alpha})|_{\mathfrak{h}^*}$ coincides with the reflection $s_{\alpha} \colon \mathfrak{h}^* \to \mathfrak{h}^*$. Deduce that the Weyl group W acts on \mathfrak{h}^* by inner automorphisms, i.e. for any $w \in W$ there is a (non-unique!) element $\tilde{w} \in G$ such that $\mathrm{Ad}^*(\tilde{w})|_{\mathfrak{h}^*} = w$.