HOMEWORK 11 (DUE NOVEMBER 16)

1. (a) Verify that if two vertices of a Dynkin diagram are connected by a single edge, then the corresponding simple roots are in the same W-orbit.
(b) Show that for a reduced irreducible root system R, the Weyl group W acts transitively on the set of all roots of the same length.
2. Given any irreducible root system $R \subset E$, verify that E is an irreducible representation of the corresponding Weyl group W.
3. (a) Verify that the classical reduced root systems of types $A_{n}, B_{n}, C_{n}, D_{n}$ (from Problem 4 of Homework 9) indeed have the same named Dynkin diagrams (as drawn in Lecture 22).
(b) Verify that the exceptional reduced root systems of types $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$ (see Problem 5 of Homework 9) indeed have the same named Dynkin diagrams (as drawn in Lecture 22).
4. Given a reduced root system $R \subset E$ with a polarization $R=R_{+} \cup R_{-}$and the set of simple roots $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset R_{+}$, recall the element $\rho=\frac{1}{2} \sum_{\alpha \in R_{+}} \alpha=\sum_{i=1}^{r} \varpi_{i} \in E$ (see Lemma 2 of Lecture 21). Let $\rho^{\vee} \in E^{*}$ be such an element for the dual root system $R^{\vee} \subset E^{*}$.
(a) Compute ρ, ρ^{\vee} for the classical root systems of types $A_{n}, B_{n}, C_{n}, D_{n}$.
(b*) Compute ρ, ρ^{\vee} for the exceptional root systems of types $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$.
5. Complete the proof of the Main Theorem from Lecture 22 by verifying that none of the following graphs can appear as a subgraph of a Dynkin diagram (see pictures in the notes):

- analogue of \widetilde{D}_{n} with some multiple edges
- $\widetilde{G}_{2}, D_{4}^{(3)}$ as well as their analogues with a multiple edge instead of the simple one
- $\widetilde{B}_{n}, A_{2 n-1}^{(2)}$ as well as their analogues with one/two of their two "legs" being multiple
- $\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$
- $\widetilde{C}_{n}, D_{n+1}^{(2)}, A_{2 n}^{(2)}$
- $\widetilde{F}_{4}, E_{6}^{(2)}$

Hint: Verify that in each of the above cases the corresponding Cartan matrix is degenerate, or alternatively, verify that the symmetrized Cartan matrix is not positive definite.
6. Let G be a connected \mathbb{C} Lie group such that $\mathfrak{g}=\operatorname{Lie}(G)$ is semisimple. Fix a root decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$. For any $\alpha \in R$, consider the embedding $\iota_{\alpha}: \mathfrak{s l}(2, \mathbb{C}) \hookrightarrow \mathfrak{g}$ [Lecture 16, Lemma 2], and lift it to $\iota_{\alpha}: S L(2, \mathbb{C}) \rightarrow G$. Define $S_{\alpha}:=\iota_{\alpha}\left(\exp \left(f_{\alpha}\right) \exp \left(-e_{\alpha}\right) \exp \left(f_{\alpha}\right)\right) \in G$. Show that the dual of the adjoint action of S_{α} on \mathfrak{g}^{*} preserves \mathfrak{h}^{*}, and $\left.\operatorname{Ad}^{*}\left(S_{\alpha}\right)\right|_{\mathfrak{h}^{*}}$ coincides with the reflection $s_{\alpha}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$. Deduce that the Weyl group W acts on \mathfrak{h}^{*} by inner automorphisms, i.e. for any $w \in W$ there is a (non-unique!) element $\tilde{w} \in G$ such that $\left.\operatorname{Ad}^{*}(\tilde{w})\right|_{\mathfrak{h}^{*}}=w$.

