HOMEWORK 12 (DUE NOVEMBER 28)

1. This problem is aimed at completing the details in the proof of [Lecture 23, Theorem 2]. Let R be a reduced root system with a Cartan matrix $A=\left(a_{i j}\right)_{i, j=1}^{r}$.
(a) Let $\widetilde{\mathfrak{g}}(R)$ be a Lie algebra generated by $\left\{e_{i}, h_{i}, f_{i}\right\}_{i=1}^{r}$ subject to Chevalley relations:

$$
\left[h_{i}, h_{j}\right]=0, \quad\left[h_{i}, e_{j}\right]=a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}, \quad\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i} \quad \forall i, j
$$

Let $\tilde{\mathfrak{n}}_{+}(R)$ be the subalgebra generated by $\left\{e_{i}\right\}_{i=1}^{r}, \widetilde{\mathfrak{n}}_{-}(R)$ be the subalgebra generated by $\left\{f_{i}\right\}_{i=1}^{r}, \mathfrak{h}_{+}(R)$ be the subalgebra generated by $\left\{h_{i}\right\}_{i=1}^{r}$. Verify that as vector spaces:

$$
\widetilde{\mathfrak{g}}(R)=\widetilde{\mathfrak{n}}_{-}(R) \oplus \widetilde{\mathfrak{h}}(R) \oplus \widetilde{\mathfrak{n}}_{+}(R) .
$$

(b) Prove that $\widetilde{\mathfrak{n}}_{+}(R)$ is a free Lie algebra in $\left\{e_{i}\right\}_{i=1}^{r}, \widetilde{\mathfrak{n}}_{-}(R)$ is a free Lie algebra in $\left\{f_{i}\right\}_{i=1}^{r}$, and $\widetilde{\mathfrak{h}}_{+}(R)$ has a basis $\left\{h_{i}\right\}_{i=1}^{r}$.

Hint: Consider a Lie algebra $\mathfrak{a}=\overline{\mathfrak{h}} \ltimes L_{r}$, where $\overline{\mathfrak{h}}$ is an abelian Lie algebra with a basis $\left\{\bar{h}_{i}\right\}_{i=1}^{r}, L_{r}$ is a free Lie algebra generated by $\left\{\bar{f}_{i}\right\}_{i=1}^{r}$, and the semidirect product is with respect to $\left[\bar{h}_{i}, \bar{f}_{j}\right]=-a_{i j} \bar{f}_{j}$ ([Homework 5, Problem 7]). Consider the universal enveloping algebra

$$
U(\mathfrak{a})=\mathbb{C}\left[\bar{h}_{1}, \ldots, \bar{h}_{r}\right] \ltimes \mathbb{C}\left\langle\bar{f}_{1}, \ldots, \bar{f}_{r}\right\rangle .
$$

Construct the unique action of $\widetilde{\mathfrak{g}}(R)$ on $U(\mathfrak{a})$ such that

$$
h_{i}(H \otimes 1)=\left(\bar{h}_{i} H\right) \otimes 1, \quad f_{i}(H \otimes F)=H \otimes\left(\bar{f}_{i} F\right)
$$

for any $H \in \mathbb{C}\left[\bar{h}_{1}, \ldots, \bar{h}_{r}\right]$ and $F \in \mathbb{C}\left\langle\bar{f}_{1}, \ldots, \bar{f}_{r}\right\rangle$. Consider the linear map

$$
\varphi: \widetilde{\mathfrak{g}}(R) \rightarrow U \quad \text { given by } \quad x \mapsto x(1) .
$$

Deduce that $\left\{h_{i}\right\}_{i=1}^{r} \subset \tilde{\mathfrak{g}}(R)$ are linearly independent (since so are $\varphi\left(h_{i}\right) \in U(\mathfrak{a})$), hence form a basis of $\mathfrak{\mathfrak { h }}(R)$. As the restriction of φ to $\widetilde{\mathfrak{n}}_{-}(R)$ sends any commutator of f_{i} 's to the corresponding commutator of \bar{f}_{i} 's, deduce that $\tilde{\mathfrak{n}}_{-}(R)$ is indeed a free Lie algebra in $\left\{f_{i}\right\}_{i=1}^{r}$.
(c) For any k and $i \neq j$, verify that $\left[f_{k}, \operatorname{ad}\left(e_{i}\right)^{1-a_{i j}} e_{j}\right]=0=\left[e_{k}, \operatorname{ad}\left(f_{i}\right)^{1-a_{i j}} f_{j}\right]$ in $\widetilde{\mathfrak{g}}(R)$.
(d) Show that if $a, b \in \widetilde{\mathfrak{g}}(R)$ generate finite-dimensional $\mathfrak{s l}(2, \mathbb{C})_{\alpha_{i}}$-submodules for every i, then so does their Lie bracket $[a, b] \in \widetilde{\mathfrak{g}}(R)$.
2. Let $R \subset E$ be a reduced irreducible simply laced root system. Up to rescaling R, we shall assume that $(\alpha, \alpha)=2$ for any root $\alpha \in R$. Let $Q \subset E$ be the root lattice of R.
(a) Verify that $R=\{\alpha \in Q \mid(\alpha, \alpha)=2\}$.
(b) Construct $\epsilon: Q \times Q \rightarrow\{ \pm 1\}$ satisfying (for any $\alpha, \beta, \gamma \in Q$)

$$
\epsilon(\alpha, \beta+\gamma)=\epsilon(\alpha, \beta) \epsilon(\alpha, \gamma), \quad \epsilon(\alpha+\beta, \gamma)=\epsilon(\alpha, \gamma) \epsilon(\beta, \gamma), \quad \epsilon(\alpha, \alpha)=(-1)^{(\alpha, \alpha) / 2}
$$

Hint: If $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ are the simple roots of R with respect to some polarization, then set $\epsilon\left(\alpha_{i}, \alpha_{i}\right)=-1, \epsilon\left(\alpha_{i}, \alpha_{j}\right) \epsilon\left(\alpha_{j}, \alpha_{i}\right)=(-1)^{\left(\alpha_{i}, \alpha_{j}\right)}$ for $i \neq j$, and extend it bilinearly to $Q \times Q$.
(c*) Consider a vector space V with a basis $\left\{u_{i}\right\}_{i \in I} \cup\left\{v_{\alpha}\right\}_{\alpha \in R}$, where $\left\{\alpha_{i}\right\}_{i \in I}$ are simple roots of R with respect to some polarization. Verify that linear operators $e_{i}, f_{i}, h_{i}: V \rightarrow V$ given by

$$
\begin{aligned}
& h_{i}\left(u_{j}\right)=0, \quad h_{i}\left(v_{\alpha}\right)=\left(\alpha, \alpha_{i}\right) v_{\alpha}, \\
& e_{i}\left(u_{j}\right)=\left|\left(\alpha_{i}, \alpha_{j}\right)\right| v_{\alpha_{i}}, \quad e_{i}\left(v_{\alpha}\right)=\left\{\begin{array}{ll}
v_{\alpha+\alpha_{i}} & \text { if } \alpha+\alpha_{i} \in R \\
u_{i} & \text { if } \alpha=-\alpha_{i} \\
0 & \text { if } \alpha+\alpha_{i} \notin R \cup 0
\end{array},\right. \\
& f_{i}\left(u_{j}\right)=\left|\left(\alpha_{i}, \alpha_{j}\right)\right| v_{-\alpha_{i}}, \quad f_{i}\left(v_{\alpha}\right)= \begin{cases}v_{\alpha-\alpha_{i}} & \text { if } \alpha-\alpha_{i} \in R \\
u_{i} & \text { if } \alpha=\alpha_{i} \\
0 & \text { if } \alpha-\alpha_{i} \notin R \cup 0\end{cases}
\end{aligned}
$$

give rise an action $\mathfrak{g} \curvearrowright V$. Identify this \mathfrak{g}-representation with the adjoint representation of \mathfrak{g}.
This reconstructs the simply-laced simple Lie algebras from their Cartan matrices.
3. Let \mathfrak{h} be a Cartan subalgebra of a semisimple Lie algebra \mathfrak{g}. Show that any submodule and quotient of a \mathfrak{g}-module that admits a weight decomposition also admit such decompositions.
4. Let \mathfrak{g} be a semisimple Lie algebra with a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. Prove that any nonzero \mathfrak{g}-module homomorphism $\phi: M_{\lambda} \rightarrow M_{\mu}$ of Verma modules is injective.

Hint: Use $M_{\sharp} \simeq U\left(\mathfrak{n}_{-}\right)$([Lecture 24, Prop. 1]) and $U\left(\mathfrak{n}_{-}\right)$is a domain ([Lecture 9, Cor. 1]).
5. Let P_{+}denote the set of all dominant integral weights of \mathfrak{g} in the weight lattice $P=\oplus_{i} \mathbb{Z} \omega_{i}$, and consider the subset Q_{+}of the root lattice $Q=\oplus_{i} \mathbb{Z} \alpha_{i}$ given by $Q_{+}=\left\{\sum_{i} n_{i} \alpha_{i} \mid n_{i} \in \mathbb{Z}_{\geq 0}\right\}$.
(a) Verify that for any $\lambda \in P$, the intersection $P_{+} \cap\left(\lambda-Q_{+}\right)$is a finite set.
(b) Verify that for any $\lambda \in P$, the orbit $W \lambda=\{w(\lambda) \mid w \in W\}$ has exactly one element in P_{+}.

Hint: Assume that $\lambda \neq \mu \in P_{+}$and $\mu=w(\lambda)$ with the shortest reduced decomposition $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{\ell}}$. Find $\gamma \in R_{+}$such that $s_{i_{1}} w(\gamma) \in R_{+}, w(\gamma) \in R_{-} . U \operatorname{sing}(\lambda, \gamma)=(\mu, w(\gamma))$ deduce that $(\lambda, \gamma)=0$. Conclude that $\mu=s_{i_{2}} \ldots s_{i_{\ell}}(\lambda)$, contradicting the mimimality of $\ell(w)$.
6. This problem revises [Homework 4, Problem 6] in the context of Lectures 24-25.
(a) For any $k \geq 0$, consider the representation $V=S^{k}\left(\mathbb{C}^{n}\right)$ of $\mathfrak{s l}_{n}(\mathbb{C})$. Compute all weights of V and describe the corresponding weight subspaces. Prove that V is irreducible by showing that the space of highest weight vectors is one-dimensional (describe it explicitly).
(b) For any $1 \leq k \leq n$, consider the representation $V=\Lambda^{k}\left(\mathbb{C}^{n}\right)$ of $\mathfrak{s l}_{n}(\mathbb{C})$. Compute all weights of V and describe the corresponding weight subspaces. Prove that V is irreducible by showing that the space of highest weight vectors is one-dimensional (describe it explicitly).

