HOMEWORK 12 (DUE NOVEMBER 28)

1. This problem is aimed at completing the details in the proof of [Lecture 23, Theorem 2]. Let R be a reduced root system with a Cartan matrix $A = (a_{ij})_{i,j=1}^r$.

(a) Let $\tilde{\mathfrak{g}}(R)$ be a Lie algebra generated by $\{e_i, h_i, f_i\}_{i=1}^r$ subject to Chevalley relations:

$$[h_i, h_j] = 0$$
, $[h_i, e_j] = a_{ij}e_j$, $[h_i, f_j] = -a_{ij}f_j$, $[e_i, f_j] = \delta_{ij}h_i$ $\forall i, j$.

Let $\tilde{\mathfrak{n}}_+(R)$ be the subalgebra generated by $\{e_i\}_{i=1}^r$, $\tilde{\mathfrak{n}}_-(R)$ be the subalgebra generated by $\{f_i\}_{i=1}^r$, $\tilde{\mathfrak{h}}_+(R)$ be the subalgebra generated by $\{h_i\}_{i=1}^r$. Verify that as vector spaces:

$$\widetilde{\mathfrak{g}}(R) = \widetilde{\mathfrak{n}}_{-}(R) \oplus \mathfrak{h}(R) \oplus \widetilde{\mathfrak{n}}_{+}(R)$$
.

(b) Prove that $\tilde{\mathfrak{n}}_+(R)$ is a free Lie algebra in $\{e_i\}_{i=1}^r$, $\tilde{\mathfrak{n}}_-(R)$ is a free Lie algebra in $\{f_i\}_{i=1}^r$, and $\tilde{\mathfrak{h}}_+(R)$ has a basis $\{h_i\}_{i=1}^r$.

Hint: Consider a Lie algebra $\mathfrak{a} = \overline{\mathfrak{h}} \ltimes L_r$, where $\overline{\mathfrak{h}}$ is an abelian Lie algebra with a basis $\{\overline{h}_i\}_{i=1}^r$, L_r is a free Lie algebra generated by $\{\overline{f}_i\}_{i=1}^r$, and the semidirect product is with respect to $[\overline{h}_i, \overline{f}_j] = -a_{ij}\overline{f}_j$ ([Homework 5, Problem 7]). Consider the universal enveloping algebra

 $U(\mathfrak{a}) = \mathbb{C}[\bar{h}_1, \dots, \bar{h}_r] \ltimes \mathbb{C}\langle \bar{f}_1, \dots, \bar{f}_r \rangle.$

Construct the unique action of $\tilde{\mathfrak{g}}(R)$ on $U(\mathfrak{a})$ such that

 $h_i(H \otimes 1) = (\bar{h}_i H) \otimes 1, \quad f_i(H \otimes F) = H \otimes (\bar{f}_i F)$

for any $H \in \mathbb{C}[\bar{h}_1, \ldots, \bar{h}_r]$ and $F \in \mathbb{C}\langle \bar{f}_1, \ldots, \bar{f}_r \rangle$. Consider the linear map

 $\varphi \colon \widetilde{\mathfrak{g}}(R) \to U \quad \text{given by} \quad x \mapsto x(1) \,.$

Deduce that $\{h_i\}_{i=1}^r \subset \tilde{\mathfrak{g}}(R)$ are linearly independent (since so are $\varphi(h_i) \in U(\mathfrak{a})$), hence form a basis of $\tilde{\mathfrak{h}}(R)$. As the restriction of φ to $\tilde{\mathfrak{n}}_{-}(R)$ sends any commutator of f_i 's to the corresponding commutator of \bar{f}_i 's, deduce that $\tilde{\mathfrak{n}}_{-}(R)$ is indeed a free Lie algebra in $\{f_i\}_{i=1}^r$.

(c) For any k and $i \neq j$, verify that $[f_k, \operatorname{ad}(e_i)^{1-a_{ij}}e_j] = 0 = [e_k, \operatorname{ad}(f_i)^{1-a_{ij}}f_j]$ in $\widetilde{\mathfrak{g}}(R)$.

(d) Show that if $a, b \in \tilde{\mathfrak{g}}(R)$ generate finite-dimensional $\mathfrak{sl}(2, \mathbb{C})_{\alpha_i}$ -submodules for every i, then so does their Lie bracket $[a, b] \in \tilde{\mathfrak{g}}(R)$.

2. Let $R \subset E$ be a reduced irreducible simply laced root system. Up to rescaling R, we shall assume that $(\alpha, \alpha) = 2$ for any root $\alpha \in R$. Let $Q \subset E$ be the root lattice of R.

(a) Verify that $R = \{ \alpha \in Q \mid (\alpha, \alpha) = 2 \}.$

(b) Construct
$$\epsilon: Q \times Q \to \{\pm 1\}$$
 satisfying (for any $\alpha, \beta, \gamma \in Q$)

$$\epsilon(\alpha,\beta+\gamma) = \epsilon(\alpha,\beta)\epsilon(\alpha,\gamma), \quad \epsilon(\alpha+\beta,\gamma) = \epsilon(\alpha,\gamma)\epsilon(\beta,\gamma), \quad \epsilon(\alpha,\alpha) = (-1)^{(\alpha,\alpha)/2}$$

Hint: If $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ are the simple roots of R with respect to some polarization, then set $\epsilon(\alpha_i, \alpha_i) = -1$, $\epsilon(\alpha_i, \alpha_j)\epsilon(\alpha_j, \alpha_i) = (-1)^{(\alpha_i, \alpha_j)}$ for $i \neq j$, and extend it bilinearly to $Q \times Q$.

(c*) Consider a vector space V with a basis $\{u_i\}_{i\in I} \cup \{v_\alpha\}_{\alpha\in R}$, where $\{\alpha_i\}_{i\in I}$ are simple roots of R with respect to some polarization. Verify that linear operators $e_i, f_i, h_i \colon V \to V$ given by

$$h_{i}(u_{j}) = 0, \qquad h_{i}(v_{\alpha}) = (\alpha, \alpha_{i})v_{\alpha},$$

$$e_{i}(u_{j}) = |(\alpha_{i}, \alpha_{j})|v_{\alpha_{i}}, \qquad e_{i}(v_{\alpha}) = \begin{cases} v_{\alpha+\alpha_{i}} & \text{if } \alpha + \alpha_{i} \in R \\ u_{i} & \text{if } \alpha = -\alpha_{i} \\ 0 & \text{if } \alpha + \alpha_{i} \notin R \cup 0 \end{cases},$$

$$f_{i}(u_{j}) = |(\alpha_{i}, \alpha_{j})|v_{-\alpha_{i}}, \qquad f_{i}(v_{\alpha}) = \begin{cases} v_{\alpha-\alpha_{i}} & \text{if } \alpha - \alpha_{i} \in R \\ u_{i} & \text{if } \alpha = \alpha_{i} \\ 0 & \text{if } \alpha - \alpha_{i} \notin R \cup 0 \end{cases}$$

give rise an action $\mathfrak{g} \curvearrowright V$. Identify this \mathfrak{g} -representation with the adjoint representation of \mathfrak{g} . This reconstructs the simply-laced simple Lie algebras from their Cartan matrices.

3. Let \mathfrak{h} be a Cartan subalgebra of a semisimple Lie algebra \mathfrak{g} . Show that any submodule and quotient of a \mathfrak{g} -module that admits a weight decomposition also admit such decompositions.

4. Let \mathfrak{g} be a semisimple Lie algebra with a triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$. Prove that any nonzero \mathfrak{g} -module homomorphism $\phi: M_\lambda \to M_\mu$ of Verma modules is injective.

Hint: Use $M_{\sharp} \simeq U(\mathfrak{n}_{-})$ ([Lecture 24, Prop. 1]) and $U(\mathfrak{n}_{-})$ is a domain ([Lecture 9, Cor. 1]).

5. Let P_+ denote the set of all dominant integral weights of \mathfrak{g} in the weight lattice $P = \bigoplus_i \mathbb{Z}\omega_i$, and consider the subset Q_+ of the root lattice $Q = \bigoplus_i \mathbb{Z}\alpha_i$ given by $Q_+ = \{\sum_i n_i \alpha_i \mid n_i \in \mathbb{Z}_{\geq 0}\}$.

(a) Verify that for any $\lambda \in P$, the intersection $P_+ \cap (\lambda - Q_+)$ is a finite set.

(b) Verify that for any $\lambda \in P$, the orbit $W\lambda = \{w(\lambda) \mid w \in W\}$ has exactly one element in P_+ .

Hint: Assume that $\lambda \neq \mu \in P_+$ and $\mu = w(\lambda)$ with the shortest reduced decomposition $w = s_{i_1}s_{i_2}\ldots s_{i_\ell}$. Find $\gamma \in R_+$ such that $s_{i_1}w(\gamma) \in R_+$, $w(\gamma) \in R_-$. Using $(\lambda, \gamma) = (\mu, w(\gamma))$ deduce that $(\lambda, \gamma) = 0$. Conclude that $\mu = s_{i_2}\ldots s_{i_\ell}(\lambda)$, contradicting the minimality of $\ell(w)$.

6. This problem revises [Homework 4, Problem 6] in the context of Lectures 24–25.

(a) For any $k \ge 0$, consider the representation $V = S^k(\mathbb{C}^n)$ of $\mathfrak{sl}_n(\mathbb{C})$. Compute all weights of V and describe the corresponding weight subspaces. Prove that V is irreducible by showing that the space of highest weight vectors is one-dimensional (describe it explicitly).

(b) For any $1 \leq k \leq n$, consider the representation $V = \Lambda^k(\mathbb{C}^n)$ of $\mathfrak{sl}_n(\mathbb{C})$. Compute all weights of V and describe the corresponding weight subspaces. Prove that V is irreducible by showing that the space of highest weight vectors is one-dimensional (describe it explicitly).