HOMEWORK 2 (DUE FEBRUARY 16)

Part 1: Pick and write up solutions for any 1 problem among the ones below.
1. Exercise 1 in IV.9 of Kassel’s textbook, page 88.
2. Exercise 4 in IV.9 of Kassel’s textbook, page 89.

Part 2: Pick and write up solutions for any 1 problem among the ones below.

3. Formula for E™F" written in the PBW basis of U, (sl2) from Lecture 9:

min(m,n) i
EmF" = ; [ﬂ m (i)t .E[K;z’ +j—(m+n)]-E™"  VYmn>0.

4. Prove the technical exercise used in the proof of Lemma 2 from Lecture 10. Explicitly,
if FNV = 0 show that FN="h,.V = 0 for any 0 < r < N, where we define

r—1
hy = H [K;r — N+ j].
j=1-r

Part 3: Pick and write up solutions for any 1 problem among the ones below.
In Problems 5-6, ¢ is assumed to be a primitive d-th root of unity (d > 2). We also define

o d if d is odd
" ld/2 ifdiseven’

5. Prove that the center of U,(sly) is generated by E¢, F¢, K¢, K~¢, and C.

6. Classify all simple finite-dimensional Uj(slz)-modules (cf. Exercise VI.6.3 of Kassel’s
textbook, page 138).

Part 4 (optional extra problem*): Higher rank versions of M,(2), GL4(2), SLy(2).

Fix ¢ € k* and n € Z~. First, we generalize the notion of the quantum plane: the quantum
polynomial algebra kg[z1,...,z,] is the associative algebra generated by z1,...,z, with
the defining relations xjz; = gx;z; for any i < j. Next, we define M,(n) as the associative
algebra generated by {t; ;};';_; with the following defining relations (for any i < j and a < b):

(%) tiatia = Qtialja, tivtia = Qtiativs tiptia = tiativ, [tiartis] = (@ — Qtivtia-
The following problem provides an alternative viewpoint towards M, (n) alike that for M, (2):

7.1. Given n? elements {T} ; }ij=1 of an algebra R, let us encode them in a single R-valued
n x n-matrix T' = 7, . T; B j. Set R == R@kg[z1,..., 2], R = ky[a1,...,2,] ® R.
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Finally, define elements {z}}? ; and {z/}" , of R’ and R”, respectively, via
=T-|: and («f, - a) = (21, ,@n) - T.

Assuming ¢? # —1, prove that the following two conditions are equivalent:
(1) The generators T; i satisfy the relations (x) with ¢; ; replaced by T; ;.

(2) We have zx; = qzjz’; and 27z} = quia’] for any i < j.
Similarly to M,(2 ), the above algebra is naturally equipped with a bialgebra structure:
7.2. Verify that M,(n) is a bialgebra with the coproduct A and counit e defined via
AT)=TxT, e(T)=1,.

For what follows, it’s instrumental to consider the quantum skew polynomial algebra
Ag[&1, ..., &) generated by &1, ..., &, with the defining relations &2 = 0, & = —q&;& for
any 7 < j. The following generalizes Problem 6 from Homework 1:

& &1
8. (a) Set R:= R® Ay[¢1,...,&)] and define &), ...,&, € Rvia | : | =T-| : |. Prove
&n &n
that assertions of Problem 7.1 are equivalent to a: = qxlac & §’ = —q§’ (§) =0Vi<j.
(b) Find left and right M,(n)-algebra-comodule structures on Ag[{1, ..., &)
(c) Prove that & ...¢), = dety - & ... &, where the quantum determinant of M,(n) is
detq = Z (—q)_l(a)tlva(l) .. 'tn,a(n)'

gESy,
(d) Deduce that dety is group-like, that is, A(det,) = det, ® det,.

More generally, given two ordered sets I = {iy,i2,...,it} and J = {j1,72,...,Jk} with
1< <...<ip<n, 1 <j1 <...<jr <n, one defines the quantum minor via

1 1
ty = E (*Q) (U)tihjau) . 'tikvja(k)'
gESy

9. Recall the two coactions of My(n) on Ay[é1, ..., &,] from Problem 8(b).

(a) Write down the formulas for the images of & := &;, ... &;, under both coactions.

(b) Define t;,; := (—q)" - tH: ::R% ]]: Prove the equalities } tijtix = 0ix-dety = > tijti-

(c) Deduce that det, is a central element of M;,(n).

In complete analogy with n = 2 case, one defines the algebras GL,(n) and SL,(n) via:
GLg(n) := My(n)[t]/(tdety — 1) and SLqg(n) := My(n)/(detq — 1).

Due to Problems 8-9, the bialgebra structure on M,(n) together with the standard bialgebra

structure on k[t] give rise to bialgebra structures on GL4(n) and SL,(n). In fact, we have:

10. Prove that GLy(n), SLq(n) are Hopf algebras with the antipode S(¢; ;) = detq_1 i j.



