HOMEWORK 2 (DUE FEBRUARY 16)

Part 1: Pick and write up solutions for any 1 problem among the ones below.

1. Exercise 1 in IV. 9 of Kassel's textbook, page 88.
2. Exercise 4 in IV. 9 of Kassel's textbook, page 89.

Part 2: Pick and write up solutions for any 1 problem among the ones below.
3. Formula for $E^{m} F^{n}$ written in the PBW basis of $U_{q}\left(\mathfrak{s l}_{2}\right)$ from Lecture 9:

$$
E^{m} F^{n}=\sum_{i=0}^{\min (m, n)}\left[\begin{array}{c}
m \\
i
\end{array}\right]\left[\begin{array}{c}
n \\
i
\end{array}\right][i]!\cdot F^{n-i} \cdot \prod_{j=1}^{i}[K ; i+j-(m+n)] \cdot E^{m-i} \quad \forall m, n \geq 0 .
$$

4. Prove the technical exercise used in the proof of Lemma 2 from Lecture 10. Explicitly, if $F^{N} V=0$ show that $F^{N-r} h_{r} V=0$ for any $0 \leq r \leq N$, where we define

$$
h_{r}:=\prod_{j=1-r}^{r-1}[K ; r-N+j] .
$$

Part 3: Pick and write up solutions for any 1 problem among the ones below.
In Problems $5-6, q$ is assumed to be a primitive d-th root of unity $(d>2)$. We also define

$$
e:=\left\{\begin{array}{ll}
d & \text { if } d \text { is odd } \\
d / 2 & \text { if } d \text { is even }
\end{array} .\right.
$$

5. Prove that the center of $U_{q}\left(\mathfrak{s l}_{2}\right)$ is generated by $E^{e}, F^{e}, K^{e}, K^{-e}$, and C.
6. Classify all simple finite-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules (cf. Exercise VI.6.3 of Kassel's textbook, page 138).
Part 4 (optional extra problem*): Higher rank versions of $M_{q}(2), G L_{q}(2), S L_{q}(2)$.
Fix $q \in \mathbf{k}^{*}$ and $n \in \mathbb{Z}_{>0}$. First, we generalize the notion of the quantum plane: the quantum polynomial algebra $\mathbf{k}_{q}\left[x_{1}, \ldots, x_{n}\right]$ is the associative algebra generated by x_{1}, \ldots, x_{n} with the defining relations $x_{j} x_{i}=q x_{i} x_{j}$ for any $i<j$. Next, we define $M_{q}(n)$ as the associative algebra generated by $\left\{t_{i, j}\right\}_{i, j=1}^{n}$ with the following defining relations (for any $i<j$ and $a<b$):
(*) $t_{j, a} t_{i, a}=q t_{i, a} t_{j, a}, \quad t_{i, b} t_{i, a}=q t_{i, a} t_{i, b}, t_{i, b} t_{j, a}=t_{j, a} t_{i, b},\left[t_{i, a}, t_{j, b}\right]=\left(q^{-1}-q\right) t_{i, b} t_{j, a}$.
The following problem provides an alternative viewpoint towards $M_{q}(n)$ alike that for $M_{q}(2)$:
7.1. Given n^{2} elements $\left\{T_{i, j}\right\}_{i, j=1}^{n}$ of an algebra R, let us encode them in a single R-valued $n \times n$-matrix $T:=\sum_{i, j} T_{i, j} E_{i, j}$. Set $R^{\prime}:=R \otimes \mathbf{k}_{q}\left[x_{1}, \ldots, x_{n}\right], \quad R^{\prime \prime}:=\mathbf{k}_{q}\left[x_{1}, \ldots, x_{n}\right] \otimes R$.

Finally, define elements $\left\{x_{i}^{\prime}\right\}_{i=1}^{n}$ and $\left\{x_{i}^{\prime \prime}\right\}_{i=1}^{n}$ of R^{\prime} and $R^{\prime \prime}$, respectively, via

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=T \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad\left(x_{1}^{\prime \prime}, \cdots, x_{n}^{\prime \prime}\right)=\left(x_{1}, \cdots, x_{n}\right) \cdot T
$$

Assuming $q^{2} \neq-1$, prove that the following two conditions are equivalent:
(1) The generators $T_{i, j}$ satisfy the relations (\star) with $t_{i, j}$ replaced by $T_{i, j}$.
(2) We have $x_{j}^{\prime} x_{i}^{\prime}=q x_{i}^{\prime} x_{j}^{\prime}$ and $x_{j}^{\prime \prime} x_{i}^{\prime \prime}=q x_{i}^{\prime \prime} x_{j}^{\prime \prime}$ for any $i<j$.

Similarly to $M_{q}(2)$, the above algebra is naturally equipped with a bialgebra structure:
7.2. Verify that $M_{q}(n)$ is a bialgebra with the coproduct Δ and counit ϵ defined via

$$
\Delta(T)=T \otimes T, \quad \epsilon(T)=I_{n}
$$

For what follows, it's instrumental to consider the quantum skew polynomial algebra $\Lambda_{q}\left[\xi_{1}, \ldots, \xi_{n}\right]$ generated by ξ_{1}, \ldots, ξ_{n} with the defining relations $\xi_{i}^{2}=0, \xi_{i} \xi_{j}=-q \xi_{j} \xi_{i}$ for any $i<j$. The following generalizes Problem 6 from Homework 1:
8. (a) Set $\bar{R}:=R \otimes \Lambda_{q}\left[\xi_{1}, \ldots, \xi_{n}\right]$ and define $\xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime} \in \bar{R}$ via $\left(\begin{array}{c}\xi_{1}^{\prime} \\ \vdots \\ \xi_{n}^{\prime}\end{array}\right)=T \cdot\left(\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{n}\end{array}\right)$. Prove that assertions of Problem 7.1 are equivalent to $x_{j}^{\prime} x_{i}^{\prime}=q x_{i}^{\prime} x_{j}^{\prime}, \xi_{i}^{\prime} \xi_{j}^{\prime}=-q \xi_{j}^{\prime} \xi_{i}^{\prime},\left(\xi_{i}^{\prime}\right)^{2}=0 \forall i<j$.
(b) Find left and right $M_{q}(n)$-algebra-comodule structures on $\Lambda_{q}\left[\xi_{1}, \ldots, \xi_{n}\right]$.
(c) Prove that $\xi_{1}^{\prime} \ldots \xi_{n}^{\prime}=\operatorname{det}_{q} \cdot \xi_{1} \ldots \xi_{n}$, where the quantum determinant of $M_{q}(n)$ is

$$
\operatorname{det}_{q}:=\sum_{\sigma \in S_{n}}(-q)^{-l(\sigma)} t_{1, \sigma(1)} \ldots t_{n, \sigma(n)}
$$

(d) Deduce that det_{q} is group-like, that is, $\Delta\left(\operatorname{det}_{q}\right)=\operatorname{det}_{q} \otimes \operatorname{det}_{q}$.

More generally, given two ordered sets $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ with $1 \leq i_{1}<\ldots<i_{k} \leq n, 1 \leq j_{1}<\ldots<j_{k} \leq n$, one defines the quantum minor via

$$
\tilde{t}_{J}^{I}:=\sum_{\sigma \in S_{k}}(-q)^{-l(\sigma)} t_{i_{1}, j_{\sigma(1)}} \ldots t_{i_{k}, j_{\sigma(k)}}
$$

9. Recall the two coactions of $M_{q}(n)$ on $\Lambda_{q}\left[\xi_{1}, \ldots, \xi_{n}\right]$ from Problem $8(\mathrm{~b})$.
(a) Write down the formulas for the images of $\xi_{I}:=\xi_{i_{1}} \ldots \xi_{i_{k}}$ under both coactions.
(b) Define $\tilde{t}_{j, i}:=(-q)^{i-j} \cdot \tilde{t}_{\{1, \ldots, n\} \backslash\{j\}}^{\{1, \ldots, n\} \backslash\{i\}}$. Prove the equalities $\sum_{j} t_{i, j} \tilde{t}_{j, k}=\delta_{i, k} \cdot \operatorname{det}_{q}=\sum_{j} \tilde{t}_{i, j} t_{j, k}$.
(c) Deduce that det_{q} is a central element of $M_{q}(n)$.

In complete analogy with $n=2$ case, one defines the algebras $G L_{q}(n)$ and $S L_{q}(n)$ via:

$$
G L_{q}(n):=M_{q}(n)[t] /\left(t \operatorname{det}_{q}-1\right) \quad \text { and } \quad S L_{q}(n):=M_{q}(n) /\left(\operatorname{det}_{q}-1\right)
$$

Due to Problems 8-9, the bialgebra structure on $M_{q}(n)$ together with the standard bialgebra structure on $\mathbf{k}[t]$ give rise to bialgebra structures on $G L_{q}(n)$ and $S L_{q}(n)$. In fact, we have:
10. Prove that $G L_{q}(n), S L_{q}(n)$ are Hopf algebras with the antipode $S\left(t_{i, j}\right)=\operatorname{det}_{q}^{-1} \cdot \tilde{t}_{i, j}$.

