HOMEWORK 3 (DUE MARCH 1)

Part 1: Pick and write up solutions for any 1 problem among the ones below.

1. Recall the algebra ﬁq (sly) from Lecture 8, generated by {E, F, K*! L} with a certain
list of the defining relations, satisfying the following two properties:

o ﬁq(ﬁlg) ~ Uy (sly) for ¢ # +£1,
e U,_1(sly) is well-defined and is isomorphic to U(sla)[K]/(K? — 1).

Verify that the resulting algebra isomorphism ﬁq:1(5[2) /(K —1) =5 U(sly) is actually a Hopf
algebra isomorphism.

2. Let k be a field of characteristic # 2, ¢ € k be not a root of 1, A := {+¢" |r € Z},
and M, M be two finite-dimensional U, (slz)-modules. Recall the U, (sl)-module intertwiner

0f or: My ® M;-——+M; ® M, from [Lecture 14, Theorem 1], depending on the choice of
frAx A=k satisfying  f(\p) =X fFO @) = - F(@P\ p) Ve A.
(a) Classify all such maps f: A x A — k*.
(b) Classify all such f which in addition satisfy the equalities of [Lecture 15, Proposition 1]:
FOGuv) = FO ) fv) and  f,v) = fFA ) f(mv) YA pv €A
Part 2: Pick and write up solutions for any 1 problem among the ones below.
3. Consider algebra automorphisms o, and o, of the quantum plane k,[z,y] defined by
ox(2) = qv, 0.(y) =y, oy(x)=x, oy(y) =qy
as well as linear endomorphisms 8% and &E,q) of ky[z, y] defined via
O\ (x"y®) = [r]a" 1y, 8?(}) (z"y®) = [s]a"y" ! Vr,s € L>o.
(a) Verify that the operators
E(p)=z-0\(p), F(p)=09(p) -y, K(p)=o0z0,"(p) Vp€XKkylz,y]
give rise to an action of the quantum group U, (slz) on the quantum plane ky[z, y].

(b) Show that the subspace kg [z, y],, of homogeneous degree n elements is a U, (slz)-submodule.
Verify that it is generated by the highest weight vector ™ and is isomorphic to L(n,+).

4. For distinct simple roots a; # «; of a simple Lie algebra g, recall uzi] € Uy(g) defined via:

l—aij 1—(11']'

1—a;; 1—a;;— o 1—a; l—az;—
ujj = Z (1)T[ r z]} E; aj TEjEzr» Uy = Z (1)7[ , U] F; * TFJ-FZ.T.
r=0 qi r=0 qi

Prove [Lecture 17, Lemma 2] claiming the following two formulas in U,(g) ® U,(g):

Awf) =uf @1+ K "Kjouf, Aug)=u;®K, K +10u;.
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Part 3: Pick and write up solutions for any 1 problem among the ones below.
5. Generalize the results of Lecture 16 to the higher rank. In other words:

(a) Construct a bialgebra pairing M (n) x U(sl,) — k, where M (n) = k[Mat,,«n).

(b) Verify that it descends to a Hopf pairing SL(n) x U(sl,) — k, where SL(n) = k[SL,].
6. Generalize the results of Lecture 16 to the ¢g-setup. In other words:

(a) Verify that the pairing My(2) x Uy(sla) — k, defined by the same formulas as in the
classical case (using matrix coefficients of Uy (slz)-action on L(1,4)), is a bialgebra pairing.

(b) Show that it descends to a Hopf pairing SL,(2) x Uy(slz) — k.

(c) Composing the associated algebra morphism Uy (sly) — SL4(2)* with the SL,(2)*-action
on ky[z,y]} (dual to the SLy(2)-coaction on ky[x,y], from [Lecture 6, Proposition 2]), verify
that one obtains a simple Uy (slz)-module isomorphic to L(n,+).

Part 4 (optional extra problem*)
Ore extensions and application to PBW-type results (following Kassel’s textbook).

Given an algebra R, let us describe all possible algebra structures on the vector space R[t],
which satisfy the following two properties:

(1) the natural inclusion R < RJ[t] (given by z +— x - t°, 2 € R) is an algebra morphism,
(2) deg(PQ) = deg(P) + deg(Q) for any P,Q € R[t] (we assume deg(0) = —o0).

7.1. (a) Assume that an algebra structure on R]t| satisfying the above two properties
is given. Prove that R has no zero divisors and there exists a unique injective algebra
endomorphism « of R and a unique a-derivation 6 of R (that is, ¢ is a linear endomorphism
of R satisfying d(ab) = §(a)b+ a(a)d(b)), such that

(%) ta = a(a)t + 0(a) Vac R.

(b) Prove the inverse statement. Let R be an algebra without zero divisors. Given an injective
algebra endomorphism « of R and an a-derivation § of R, prove that there exists a unique
algebra structure on R[t] satisfying the above properties (1), (2), and the formula (x).

The algebra constructed in 7.1(b) is denoted R|[t; v, d] and is called the Ore extension.
A few basic properties of these algebras are summarized in the next two problems.

7.2. In the setup of 7.1(b), show that R[t; v, d] has no zero divisors. Verify that as a left
R-module, it is free with a basis {t* |k € Z>0}. Assuming a to be an automorphism, prove
that R[t;a,d] is also a right free R-module with the same basis {t* |k € Z>¢}.

Recall that a ring A is called left Noetherian if either of the equivalent conditions hold:

e any left ideal I of A is finitely generated;
e any strictly ascending sequence of left ideals Iy C Iy C --- of A is finite.

7.3. Let a be an algebra automorphism of R and § be an a-derivation of R. Prove that if
R is left Noetherian, then so is the Ore extension R|[t; a, d].

Hint: Given a left ideal I of R[t;«,d], consider a collection of subsets {I;}4ez., of R,
consisting of 0 and the leading coefficients of degree d elements of I. Prove that they are left
ideals, giving rise to the ascending sequence Iy C a~1(I1) C a~2(I3) C --- of left ideals in R.
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Recall that a ring A is Noetherian if it is left Noetherian and the opposite ring AP is
also left Noetherian (equivalently, A is right Noetherian).

7.4. (a) Let R be an algebra without zero divisors, o be the algebra automorphism of R
and d be the a-derivation of R. Verify that da~! is an o~ !-derivation of the opposite algebra
R°P and prove the following algebra isomorphism: R[t; a, 6]°P ~ R°P[t; ™!, —fa~1].

(b) Deduce that R[t;,d] is Noetherian if R is.

The above theory of Ore extensions can be used to deduce the ring-theoretical properties
of the algebras we encountered so far in the class: kgq[z,y], My(2), Uy(slz). The first is
straightforward (see 7.5), while the other two require a tower of Ore extensions (see 7.6-7.7).

7.5. Let v be the automorphism of the polynomial ring k[z] defined via a(x) = gz. Verify
that k,[z,y] ~ k[z][y; o, 0]. Deduce that the quantum plane ky[x,y] is Noetherian, has no
zero divisors, and the set of monomials {zFy’ |k, £ € Z>¢} is its k-basis.

7.6. To present M,(2) as an iterated Ore extension, we consider the following algebras:
A1 :=XK[a], As:=Xk({a,b)/(ba — qab), As:=k(a,b,c)/(ba— qab,ca — qac,cb— be).

(a) Let ay be the automorphism of A; determined by a;(a) = ga. Show that A ~ A;[b; a1, 0].
Deduce that {a*b’| k, ¢ € Zo} is a k-basis of Ay (this essentially coincides with 7.5).

(b) Let ay be the automorphism of Ay determined by as(a) = ga, as(b) = b. Verify that
Az ~ Ajc; g, 0]. Deduce that {a*b’c™ |k, £,m € Z>q} is a k-basis of As.

(c) Show that there is a unique algebra automorphism a3 of A3 such that az(a) = a, az(b) =
gb, as(c) = qc. Verify that the linear endomorphism § of As, defined on the basis by

S('¢™) =0 and §(afb'c™) = —¢71(1 — ¢PF)aF e for k>0
is an as-derivation of As. Prove that M, (2) ~ A3[d; as, d].

(d) Deduce that M,(2) is Noetherian, has no zero divisors, and the set {akbzcmdn}k,g,m,nezzo
is a k-basis of M,(2).

7.7. To present Ugy(sly) as an iterated Ore extension, we consider the following algebras:
A =k[K, K™Y,  Ay=k(K,K ' F)/(K* KT -1, KF - ¢ ?FK).

(a) Let a; be the automorphism of A; determined by a;(K) = ¢?K. Verify that Ay ~
A1[F;aq,0]. Deduce that {FCK™ | € Zso,m € Z} is a k-basis of As.

(b) Let as be the automorphism of Ay determined by ao(K) = ¢ 2K, az(F) = F. Verify

that the linear endomorphism § of As, defined on the basis by

—22’K _ q2z’K—1
q—q!

-1
S(K™) =0 and 6(F'K™) =F1Y 4 K™ for £>0
=0

is an ap-derivation of Ay. Prove that U,(sly) ~ As[E; as, .

(¢) Deduce that U,(sly) is Noetherian, has no zero divisors, and the set { E*¥F'K m}}:zeezzzo is
a k-basis of U,(sly).



