
HOMEWORK 3 (DUE MARCH 1)

Part 1: Pick and write up solutions for any 1 problem among the ones below.

1. Recall the algebra Ũq(sl2) from Lecture 8, generated by {E,F,K±1, L} with a certain
list of the defining relations, satisfying the following two properties:

• Ũq(sl2) ≃ Uq(sl2) for q ̸= ±1,

• Ũq=1(sl2) is well-defined and is isomorphic to U(sl2)[K]/(K2 − 1).

Verify that the resulting algebra isomorphism Ũq=1(sl2)/(K−1)
∼−→U(sl2) is actually a Hopf

algebra isomorphism.

2. Let k be a field of characteristic ̸= 2, q ∈ k be not a root of 1, Λ̃ := {±qr | r ∈ Z},
and M1,M2 be two finite-dimensional Uq(sl2)-modules. Recall the Uq(sl2)-module intertwiner

Θf ◦ τ : M2 ⊗M1
∼−→M1 ⊗M2 from [Lecture 14, Theorem 1], depending on the choice of

f : Λ̃× Λ̃ → k× satisfying f(λ, µ) = λ · f(λ, q2µ) = µ · f(q2λ, µ) ∀λ, µ ∈ Λ̃.

(a) Classify all such maps f : Λ̃× Λ̃ → k×.

(b) Classify all such f which in addition satisfy the equalities of [Lecture 15, Proposition 1]:

f(λ, µν) = f(λ, µ)f(λ, ν) and f(λµ, ν) = f(λ, ν)f(µ, ν) ∀λ, µ, ν ∈ Λ̃.

Part 2: Pick and write up solutions for any 1 problem among the ones below.

3. Consider algebra automorphisms σx and σy of the quantum plane kq[x, y] defined by

σx(x) = qx, σx(y) = y, σy(x) = x, σy(y) = qy

as well as linear endomorphisms ∂
(q)
x and ∂

(q)
y of kq[x, y] defined via

∂(q)
x (xrys) = [r]xr−1ys, ∂(q)

y (xrys) = [s]xrys−1 ∀ r, s ∈ Z≥0.

(a) Verify that the operators

E(p) = x · ∂(q)
y (p), F (p) = ∂(q)

x (p) · y, K(p) = σxσ
−1
y (p) ∀ p ∈ kq[x, y]

give rise to an action of the quantum group Uq(sl2) on the quantum plane kq[x, y].

(b) Show that the subspace kq[x, y]n of homogeneous degree n elements is a Uq(sl2)-submodule.
Verify that it is generated by the highest weight vector xn and is isomorphic to L(n,+).

4. For distinct simple roots αi ̸= αj of a simple Lie algebra g, recall u±ij ∈ Ūq(g) defined via:

u+ij :=

1−aij∑
r=0

(−1)r
[
1− aij

r

]
qi

E
1−aij−r
i EjE

r
i , u−ij :=

1−aij∑
r=0

(−1)r
[
1− aij

r

]
qi

F
1−aij−r
i FjF

r
i .

Prove [Lecture 17, Lemma 2] claiming the following two formulas in Ūq(g)⊗ Ūq(g):

∆(u+ij) = u+ij ⊗ 1 +K
1−aij
i Kj ⊗ u+ij , ∆(u−ij) = u−ij ⊗K

−1+aij
i K−1

j + 1⊗ u−ij .
1
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Part 3: Pick and write up solutions for any 1 problem among the ones below.

5. Generalize the results of Lecture 16 to the higher rank. In other words:

(a) Construct a bialgebra pairing M(n)× U(sln) → k, where M(n) = k[Matn×n].

(b) Verify that it descends to a Hopf pairing SL(n)× U(sln) → k, where SL(n) = k[SLn].

6. Generalize the results of Lecture 16 to the q-setup. In other words:

(a) Verify that the pairing Mq(2) × Uq(sl2) → k, defined by the same formulas as in the
classical case (using matrix coefficients of Uq(sl2)-action on L(1,+)), is a bialgebra pairing.

(b) Show that it descends to a Hopf pairing SLq(2)× Uq(sl2) → k.

(c) Composing the associated algebra morphism Uq(sl2) → SLq(2)
∗ with the SLq(2)

∗-action
on kq[x, y]

∗
n (dual to the SLq(2)-coaction on kq[x, y]n from [Lecture 6, Proposition 2]), verify

that one obtains a simple Uq(sl2)-module isomorphic to L(n,+).

Part 4 (optional extra problem*)
Ore extensions and application to PBW-type results (following Kassel’s textbook).

Given an algebra R, let us describe all possible algebra structures on the vector space R[t],
which satisfy the following two properties:

(1) the natural inclusion R ↪→ R[t] (given by x 7→ x · t0, x ∈ R) is an algebra morphism,
(2) deg(PQ) = deg(P ) + deg(Q) for any P,Q ∈ R[t] (we assume deg(0) = −∞).

7.1. (a) Assume that an algebra structure on R[t] satisfying the above two properties
is given. Prove that R has no zero divisors and there exists a unique injective algebra
endomorphism α of R and a unique α-derivation δ of R (that is, δ is a linear endomorphism
of R satisfying δ(ab) = δ(a)b+ α(a)δ(b)), such that

(⋆) ta = α(a)t+ δ(a) ∀ a ∈ R.

(b) Prove the inverse statement. Let R be an algebra without zero divisors. Given an injective
algebra endomorphism α of R and an α-derivation δ of R, prove that there exists a unique
algebra structure on R[t] satisfying the above properties (1), (2), and the formula (⋆).

The algebra constructed in 7.1(b) is denoted R[t;α, δ] and is called the Ore extension.
A few basic properties of these algebras are summarized in the next two problems.

7.2. In the setup of 7.1(b), show that R[t;α, δ] has no zero divisors. Verify that as a left
R-module, it is free with a basis {tk | k ∈ Z≥0}. Assuming α to be an automorphism, prove
that R[t;α, δ] is also a right free R-module with the same basis {tk | k ∈ Z≥0}.

Recall that a ring A is called left Noetherian if either of the equivalent conditions hold:

• any left ideal I of A is finitely generated;
• any strictly ascending sequence of left ideals I1 ⊊ I2 ⊊ · · · of A is finite.

7.3. Let α be an algebra automorphism of R and δ be an α-derivation of R. Prove that if
R is left Noetherian, then so is the Ore extension R[t;α, δ].

Hint: Given a left ideal I of R[t;α, δ], consider a collection of subsets {Id}d∈Z≥0
of R,

consisting of 0 and the leading coefficients of degree d elements of I. Prove that they are left
ideals, giving rise to the ascending sequence I0 ⊆ α−1(I1) ⊆ α−2(I2) ⊆ · · · of left ideals in R.
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Recall that a ring A is Noetherian if it is left Noetherian and the opposite ring Aop is
also left Noetherian (equivalently, A is right Noetherian).

7.4. (a) Let R be an algebra without zero divisors, α be the algebra automorphism of R
and δ be the α-derivation of R. Verify that δα−1 is an α−1-derivation of the opposite algebra
Rop and prove the following algebra isomorphism: R[t;α, δ]op ≃ Rop[t;α−1,−δα−1].

(b) Deduce that R[t;α, δ] is Noetherian if R is.

The above theory of Ore extensions can be used to deduce the ring-theoretical properties
of the algebras we encountered so far in the class: kq[x, y], Mq(2), Uq(sl2). The first is
straightforward (see 7.5), while the other two require a tower of Ore extensions (see 7.6–7.7).

7.5. Let α be the automorphism of the polynomial ring k[x] defined via α(x) = qx. Verify
that kq[x, y] ≃ k[x][y;α, 0]. Deduce that the quantum plane kq[x, y] is Noetherian, has no

zero divisors, and the set of monomials {xkyℓ | k, ℓ ∈ Z≥0} is its k-basis.

7.6. To present Mq(2) as an iterated Ore extension, we consider the following algebras:

A1 := k[a], A2 := k⟨a, b⟩/(ba− qab), A3 := k⟨a, b, c⟩/(ba− qab, ca− qac, cb− bc).

(a) Let α1 be the automorphism of A1 determined by α1(a) = qa. Show that A2 ≃ A1[b;α1, 0].
Deduce that {akbℓ | k, ℓ ∈ Z≥0} is a k-basis of A2 (this essentially coincides with 7.5).

(b) Let α2 be the automorphism of A2 determined by α2(a) = qa, α2(b) = b. Verify that
A3 ≃ A2[c;α2, 0]. Deduce that {akbℓcm | k, ℓ,m ∈ Z≥0} is a k-basis of A3.

(c) Show that there is a unique algebra automorphism α3 of A3 such that α3(a) = a, α3(b) =
qb, α3(c) = qc. Verify that the linear endomorphism δ of A3, defined on the basis by

δ(bℓcm) = 0 and δ(akbℓcm) = −q−1(1− q2k)ak−1bℓ+1cm+1 for k > 0

is an α3-derivation of A3. Prove that Mq(2) ≃ A3[d;α3, δ].

(d) Deduce that Mq(2) is Noetherian, has no zero divisors, and the set {akbℓcmdn}k,ℓ,m,n∈Z≥0

is a k-basis of Mq(2).

7.7. To present Uq(sl2) as an iterated Ore extension, we consider the following algebras:

A1 := k[K,K−1], A2 := k⟨K,K−1, F ⟩/(K±1 ·K∓1 − 1,KF − q−2FK).

(a) Let α1 be the automorphism of A1 determined by α1(K) = q2K. Verify that A2 ≃
A1[F ;α1, 0]. Deduce that {F ℓKm | ℓ ∈ Z≥0,m ∈ Z} is a k-basis of A2.

(b) Let α2 be the automorphism of A2 determined by α2(K) = q−2K, α2(F ) = F . Verify
that the linear endomorphism δ of A2, defined on the basis by

δ(Km) = 0 and δ(F ℓKm) = F ℓ−1
ℓ−1∑
i=0

q−2iK − q2iK−1

q − q−1
Km for ℓ > 0

is an α2-derivation of A2. Prove that Uq(sl2) ≃ A2[E;α2, δ].

(c) Deduce that Uq(sl2) is Noetherian, has no zero divisors, and the set {EkF ℓKm}m∈Z
k,ℓ∈Z≥0

is

a k-basis of Uq(sl2).


