HOMEWORK 3 (DUE MARCH 1)

Part 1: Pick and write up solutions for any 1 problem among the ones below.

1. Recall the algebra $\widetilde{U}_{q}\left(\mathfrak{s l}_{2}\right)$ from Lecture 8 , generated by $\left\{E, F, K^{ \pm 1}, L\right\}$ with a certain list of the defining relations, satisfying the following two properties:

- $\widetilde{U}_{q}\left(\mathfrak{S l}_{2}\right) \simeq U_{q}\left(\mathfrak{s l}_{2}\right)$ for $q \neq \pm 1$,
- $\widetilde{U}_{q=1}\left(\mathfrak{s l}_{2}\right)$ is well-defined and is isomorphic to $U\left(\mathfrak{s l}_{2}\right)[K] /\left(K^{2}-1\right)$.

Verify that the resulting algebra isomorphism $\widetilde{U}_{q=1}\left(\mathfrak{s l}_{2}\right) /(K-1) \xrightarrow{\sim} U\left(\mathfrak{s l}_{2}\right)$ is actually a Hopf algebra isomorphism.
2. Let \mathbf{k} be a field of characteristic $\neq 2, q \in \mathbf{k}$ be not a root of $1, \tilde{\Lambda}:=\left\{ \pm q^{r} \mid r \in \mathbb{Z}\right\}$, and M_{1}, M_{2} be two finite-dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules. Recall the $U_{q}\left(\mathfrak{s l}_{2}\right)$-module intertwiner $\Theta^{f} \circ \tau: M_{2} \otimes M_{1} \xrightarrow{\sim} M_{1} \otimes M_{2}$ from [Lecture 14, Theorem 1], depending on the choice of

$$
f: \tilde{\Lambda} \times \tilde{\Lambda} \rightarrow \mathbf{k}^{\times} \quad \text { satisfying } \quad f(\lambda, \mu)=\lambda \cdot f\left(\lambda, q^{2} \mu\right)=\mu \cdot f\left(q^{2} \lambda, \mu\right) \quad \forall \lambda, \mu \in \tilde{\Lambda}
$$

(a) Classify all such maps $f: \tilde{\Lambda} \times \tilde{\Lambda} \rightarrow \mathbf{k}^{\times}$.
(b) Classify all such f which in addition satisfy the equalities of [Lecture 15, Proposition 1]:

$$
f(\lambda, \mu \nu)=f(\lambda, \mu) f(\lambda, \nu) \quad \text { and } \quad f(\lambda \mu, \nu)=f(\lambda, \nu) f(\mu, \nu) \quad \forall \lambda, \mu, \nu \in \tilde{\Lambda}
$$

Part 2: Pick and write up solutions for any 1 problem among the ones below.
3. Consider algebra automorphisms σ_{x} and σ_{y} of the quantum plane $\mathbf{k}_{q}[x, y]$ defined by

$$
\sigma_{x}(x)=q x, \quad \sigma_{x}(y)=y, \quad \sigma_{y}(x)=x, \quad \sigma_{y}(y)=q y
$$

as well as linear endomorphisms $\partial_{x}^{(q)}$ and $\partial_{y}^{(q)}$ of $\mathbf{k}_{q}[x, y]$ defined via

$$
\partial_{x}^{(q)}\left(x^{r} y^{s}\right)=[r] x^{r-1} y^{s}, \quad \partial_{y}^{(q)}\left(x^{r} y^{s}\right)=[s] x^{r} y^{s-1} \quad \forall r, s \in \mathbb{Z}_{\geq 0}
$$

(a) Verify that the operators

$$
E(p)=x \cdot \partial_{y}^{(q)}(p), \quad F(p)=\partial_{x}^{(q)}(p) \cdot y, \quad K(p)=\sigma_{x} \sigma_{y}^{-1}(p) \quad \forall p \in \mathbf{k}_{q}[x, y]
$$

give rise to an action of the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$ on the quantum plane $\mathbf{k}_{q}[x, y]$.
(b) Show that the subspace $\mathbf{k}_{q}[x, y]_{n}$ of homogeneous degree n elements is a $U_{q}\left(\mathfrak{s l}_{2}\right)$-submodule. Verify that it is generated by the highest weight vector x^{n} and is isomorphic to $L(n,+)$.
4. For distinct simple roots $\alpha_{i} \neq \alpha_{j}$ of a simple Lie algebra \mathfrak{g}, recall $u_{i j}^{ \pm} \in \bar{U}_{q}(\mathfrak{g})$ defined via:

$$
u_{i j}^{+}:=\sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-r} E_{j} E_{i}^{r}, \quad u_{i j}^{-}:=\sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i j}-r} F_{j} F_{i}^{r}
$$

Prove [Lecture 17, Lemma 2] claiming the following two formulas in $\bar{U}_{q}(\mathfrak{g}) \otimes \bar{U}_{q}(\mathfrak{g})$:

$$
\Delta\left(u_{i j}^{+}\right)=u_{i j}^{+} \otimes 1+K_{i}^{1-a_{i j}} K_{j} \otimes u_{i j}^{+}, \quad \Delta\left(u_{i j}^{-}\right)=u_{i j}^{-} \otimes K_{i}^{-1+a_{i j}} K_{j}^{-1}+1 \otimes u_{i j}^{-}
$$

Part 3: Pick and write up solutions for any 1 problem among the ones below.
5. Generalize the results of Lecture 16 to the higher rank. In other words:
(a) Construct a bialgebra pairing $M(n) \times U\left(\mathfrak{s l}_{n}\right) \rightarrow \mathbf{k}$, where $M(n)=\mathbf{k}\left[M a t_{n \times n}\right]$.
(b) Verify that it descends to a Hopf pairing $S L(n) \times U\left(\mathfrak{s l}_{n}\right) \rightarrow \mathbf{k}$, where $S L(n)=\mathbf{k}\left[S L_{n}\right]$.
6. Generalize the results of Lecture 16 to the q-setup. In other words:
(a) Verify that the pairing $M_{q}(2) \times U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathbf{k}$, defined by the same formulas as in the classical case (using matrix coefficients of $U_{q}\left(\mathfrak{s l}_{2}\right)$-action on $L(1,+)$), is a bialgebra pairing.
(b) Show that it descends to a Hopf pairing $S L_{q}(2) \times U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathbf{k}$.
(c) Composing the associated algebra morphism $U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow S L_{q}(2)^{*}$ with the $S L_{q}(2)^{*}$-action on $\mathbf{k}_{q}[x, y]_{n}^{*}$ (dual to the $S L_{q}(2)$-coaction on $\mathbf{k}_{q}[x, y]_{n}$ from [Lecture 6, Proposition 2]), verify that one obtains a simple $U_{q}\left(\mathfrak{s l}_{2}\right)$-module isomorphic to $L(n,+)$.
Part 4 (optional extra problem*)
Ore extensions and application to PBW-type results (following Kassel's textbook).
Given an algebra R, let us describe all possible algebra structures on the vector space $R[t]$, which satisfy the following two properties:
(1) the natural inclusion $R \hookrightarrow R[t]$ (given by $x \mapsto x \cdot t^{0}, x \in R$) is an algebra morphism,
(2) $\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$ for any $P, Q \in R[t]$ (we assume $\operatorname{deg}(0)=-\infty$).
7.1. (a) Assume that an algebra structure on $R[t]$ satisfying the above two properties is given. Prove that R has no zero divisors and there exists a unique injective algebra endomorphism α of R and a unique α-derivation δ of R (that is, δ is a linear endomorphism of R satisfying $\delta(a b)=\delta(a) b+\alpha(a) \delta(b))$, such that

$$
\begin{equation*}
t a=\alpha(a) t+\delta(a) \quad \forall a \in R . \tag{*}
\end{equation*}
$$

(b) Prove the inverse statement. Let R be an algebra without zero divisors. Given an injective algebra endomorphism α of R and an α-derivation δ of R, prove that there exists a unique algebra structure on $R[t]$ satisfying the above properties (1), (2), and the formula (\star).

The algebra constructed in $7.1(\mathrm{~b})$ is denoted $R[t ; \alpha, \delta]$ and is called the Ore extension. A few basic properties of these algebras are summarized in the next two problems.
7.2. In the setup of $7.1(\mathrm{~b})$, show that $R[t ; \alpha, \delta]$ has no zero divisors. Verify that as a left R-module, it is free with a basis $\left\{t^{k} \mid k \in \mathbb{Z}_{\geq 0}\right\}$. Assuming α to be an automorphism, prove that $R[t ; \alpha, \delta]$ is also a right free R-module with the same basis $\left\{t^{k} \mid k \in \mathbb{Z}_{\geq 0}\right\}$.

Recall that a ring A is called left Noetherian if either of the equivalent conditions hold:

- any left ideal I of A is finitely generated;
- any strictly ascending sequence of left ideals $I_{1} \subsetneq I_{2} \subsetneq \cdots$ of A is finite.
7.3. Let α be an algebra automorphism of R and δ be an α-derivation of R. Prove that if R is left Noetherian, then so is the Ore extension $R[t ; \alpha, \delta]$.

Hint: Given a left ideal I of $R[t ; \alpha, \delta]$, consider a collection of subsets $\left\{I_{d}\right\}_{d \in \mathbb{Z}_{\geq 0}}$ of R, consisting of 0 and the leading coefficients of degree d elements of I. Prove that they are left ideals, giving rise to the ascending sequence $I_{0} \subseteq \alpha^{-1}\left(I_{1}\right) \subseteq \alpha^{-2}\left(I_{2}\right) \subseteq \cdots$ of left ideals in R.

Recall that a ring A is Noetherian if it is left Noetherian and the opposite ring $A^{\text {op }}$ is also left Noetherian (equivalently, A is right Noetherian).
7.4. (a) Let R be an algebra without zero divisors, α be the algebra automorphism of R and δ be the α-derivation of R. Verify that $\delta \alpha^{-1}$ is an α^{-1}-derivation of the opposite algebra R^{op} and prove the following algebra isomorphism: $R[t ; \alpha, \delta]^{\mathrm{op}} \simeq R^{\mathrm{op}}\left[t ; \alpha^{-1},-\delta \alpha^{-1}\right]$.
(b) Deduce that $R[t ; \alpha, \delta]$ is Noetherian if R is.

The above theory of Ore extensions can be used to deduce the ring-theoretical properties of the algebras we encountered so far in the class: $\mathbf{k}_{q}[x, y], M_{q}(2), U_{q}\left(\mathfrak{s l}_{2}\right)$. The first is straightforward (see 7.5), while the other two require a tower of Ore extensions (see 7.6-7.7).
7.5. Let α be the automorphism of the polynomial ring $\mathbf{k}[x]$ defined via $\alpha(x)=q x$. Verify that $\mathbf{k}_{q}[x, y] \simeq \mathbf{k}[x][y ; \alpha, 0]$. Deduce that the quantum plane $\mathbf{k}_{q}[x, y]$ is Noetherian, has no zero divisors, and the set of monomials $\left\{x^{k} y^{\ell} \mid k, \ell \in \mathbb{Z}_{\geq 0}\right\}$ is its \mathbf{k}-basis.
7.6. To present $M_{q}(2)$ as an iterated Ore extension, we consider the following algebras:

$$
A_{1}:=\mathbf{k}[a], \quad A_{2}:=\mathbf{k}\langle a, b\rangle /(b a-q a b), \quad A_{3}:=\mathbf{k}\langle a, b, c\rangle /(b a-q a b, c a-q a c, c b-b c) .
$$

(a) Let α_{1} be the automorphism of A_{1} determined by $\alpha_{1}(a)=q a$. Show that $A_{2} \simeq A_{1}\left[b ; \alpha_{1}, 0\right]$. Deduce that $\left\{a^{k} b^{\ell} \mid k, \ell \in \mathbb{Z}_{\geq 0}\right\}$ is a \mathbf{k}-basis of A_{2} (this essentially coincides with 7.5).
(b) Let α_{2} be the automorphism of A_{2} determined by $\alpha_{2}(a)=q a, \alpha_{2}(b)=b$. Verify that $A_{3} \simeq A_{2}\left[c ; \alpha_{2}, 0\right]$. Deduce that $\left\{a^{k} b^{\ell} c^{m} \mid k, \ell, m \in \mathbb{Z}_{\geq 0}\right\}$ is a \mathbf{k}-basis of A_{3}.
(c) Show that there is a unique algebra automorphism α_{3} of A_{3} such that $\alpha_{3}(a)=a, \alpha_{3}(b)=$ $q b, \alpha_{3}(c)=q c$. Verify that the linear endomorphism δ of A_{3}, defined on the basis by

$$
\delta\left(b^{\ell} c^{m}\right)=0 \quad \text { and } \quad \delta\left(a^{k} b^{\ell} c^{m}\right)=-q^{-1}\left(1-q^{2 k}\right) a^{k-1} b^{\ell+1} c^{m+1} \quad \text { for } \quad k>0
$$

is an α_{3}-derivation of A_{3}. Prove that $M_{q}(2) \simeq A_{3}\left[d ; \alpha_{3}, \delta\right]$.
(d) Deduce that $M_{q}(2)$ is Noetherian, has no zero divisors, and the set $\left\{a^{k} b^{\ell} c^{m} d^{n}\right\}_{k, \ell, m, n \in \mathbb{Z}_{\geq 0}}$ is a \mathbf{k}-basis of $M_{q}(2)$.
7.7. To present $U_{q}\left(\mathfrak{s l}_{2}\right)$ as an iterated Ore extension, we consider the following algebras:

$$
A_{1}:=\mathbf{k}\left[K, K^{-1}\right], \quad A_{2}:=\mathbf{k}\left\langle K, K^{-1}, F\right\rangle /\left(K^{ \pm 1} \cdot K^{\mp 1}-1, K F-q^{-2} F K\right) .
$$

(a) Let α_{1} be the automorphism of A_{1} determined by $\alpha_{1}(K)=q^{2} K$. Verify that $A_{2} \simeq$ $A_{1}\left[F ; \alpha_{1}, 0\right]$. Deduce that $\left\{F^{\ell} K^{m} \mid \ell \in \mathbb{Z}_{\geq 0}, m \in \mathbb{Z}\right\}$ is a \mathbf{k}-basis of A_{2}.
(b) Let α_{2} be the automorphism of A_{2} determined by $\alpha_{2}(K)=q^{-2} K, \alpha_{2}(F)=F$. Verify that the linear endomorphism δ of A_{2}, defined on the basis by

$$
\delta\left(K^{m}\right)=0 \quad \text { and } \quad \delta\left(F^{\ell} K^{m}\right)=F^{\ell-1} \sum_{i=0}^{\ell-1} \frac{q^{-2 i} K-q^{2 i} K^{-1}}{q-q^{-1}} K^{m} \quad \text { for } \quad \ell>0
$$

is an α_{2}-derivation of A_{2}. Prove that $U_{q}\left(\mathfrak{s l}_{2}\right) \simeq A_{2}\left[E ; \alpha_{2}, \delta\right]$.
(c) Deduce that $U_{q}\left(\mathfrak{s l}_{2}\right)$ is Noetherian, has no zero divisors, and the set $\left\{E^{k} F^{\ell} K^{m}\right\}_{k, \ell \in \mathbb{Z} \geq 0}^{m \in \mathbb{Z}}$ is a k-basis of $U_{q}\left(\mathfrak{s l}_{2}\right)$.

