HOMEWORK 4 (DUE MARCH 15)

Part 1: Pick and write up solutions for any 2 problems among the ones below.

1. Verify the following equality for $n \in \mathbb{Z}_{>0}$ (used in the proof of [Lecture 19, Lemma 4]):

$$
\sum_{r=0}^{n}(-1)^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} q^{ \pm(1-n) r}=0
$$

2. Verify that the following gives an action of a Hopf algebra H on itself (adjoint action):

$$
\text { ad }: H \curvearrowright H \quad \text { given by } \quad \operatorname{ad}(x) y=\sum_{(x)} x^{\prime} y S\left(x^{\prime \prime}\right)
$$

3. For any collections $p_{i} \in \mathbb{Z}, r_{i}, s_{i} \in \mathbb{Z}_{>0}$ (with $i \in I$-the indexing set of simple roots of \mathfrak{g}) show that the operators E_{i}, F_{i} act locally nilpotently on the $U_{q}(\mathfrak{g})$-module $U_{q}(\mathfrak{g}) / J$, where J is the left ideal of $U_{q}(\mathfrak{g})$ generated by $E_{i}^{r_{i}}, F_{i}^{s_{i}}, K_{i}-q_{i}^{p_{i}}$ (this is [Lectures 20-21, Lemma 6]).
4. Show that if $u \in U_{q}(\mathfrak{g})$ acts trivially on all finite-dimensional $U_{q}(\mathfrak{g})$-modules, then $u=0$.

Hint: Try to argue similarly to our proof of [Lecture 18, Theorem 1], i.e. consider actions of $U_{q}(\mathfrak{g})$ on the tensor products of $\widetilde{L}(\lambda)$ and their twist by Cartan involution for $\lambda \gg 0$.

Part 2: Pick and write up solutions for any 2 problems among the ones below.
5. Recall the setup of Lecture 22: $K=\mathbb{Q}(v) \supset \mathbb{Q}\left[v, v^{-1}\right]=A, V$ is either $L(\lambda)$ or $\widetilde{L}(\lambda)$ with λ being a dominant integral weight, and $V_{A}:=\sum_{\mathfrak{J}} A F_{\mathfrak{J}} v_{\lambda}$. Verify that V_{A} is a free A-module, such that $V_{A} \otimes_{A} K \rightarrow V$ is an isomorphism, and show $\operatorname{dim}_{K}(V)=\operatorname{rk}_{A}\left(V_{A}\right)=\operatorname{dim}_{\mathbb{C}}\left(V \otimes_{A} \mathbb{C}\right)$.
6. Complete the arguments in our proof of [Lecture 22, Theorem 2] by proving:
(a) $L(\lambda)^{*} \simeq L\left(-w_{0} \lambda\right)$ for any dominant integral weight λ.

Hint: If you don't know Weyl groups, treat $\mathfrak{g}=\mathfrak{s l}_{n}$ case with $w_{0}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\lambda_{n}, \ldots, \lambda_{1}\right)$.
(b) $V \simeq\left(V^{*}\right)^{*}$ as $U_{q}(\mathfrak{g})$-modules for any finite-dimensional module V.

Hint: The usual vector space isomorphism $V \xrightarrow{\sim}\left(V^{*}\right)^{*}$ from linear algebra does not intertwine $U_{q}(\mathfrak{g})$-actions as the antipode is not involutive, but it can be fixed with a help of U_{q}^{0}.
7. Consider an embedding $\mathbb{Q}(v) \hookrightarrow \mathbf{k}$ given by $v \mapsto q \in \mathbf{k}$, where q is transcendental over \mathbb{Q}. For a dominant integral weight λ, verify that $L(\lambda)_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k}$ is a simple module over $U_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k} \simeq U_{\mathbf{k}}$. Deduce the equality $L(\lambda)_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k} \simeq L(\lambda)_{\mathbf{k}}$.
8. (a) Generalize the results on $\widetilde{U}_{q}\left(\mathfrak{s l}_{2}\right)$ of Lecture 8 by defining an algebra $\widetilde{U}_{q}(\mathfrak{g})$ generated by $\left\{E_{i}, F_{i}, K_{i}^{ \pm 1}, L_{i}\right\}_{i \in I}$ with an explicit list of the defining relations such that

- If $q^{2 d_{i}} \neq 1 \forall i \in I$, then the assignment $E_{i} \mapsto E_{i}, F_{i} \mapsto F_{i}, K_{i} \mapsto K_{i}$ gives rise to an isomorphism $U_{q}(\mathfrak{g}) \xrightarrow{\sim} \widetilde{U}_{q}(\mathfrak{g})$,
- For $q=1$, we have an isomorphism $\widetilde{U}_{q=1}(\mathfrak{g}) \simeq U(\mathfrak{g})\left[\left\{K_{i}\right\}_{i \in I}\right] /\left(\left\{K_{i}^{2}-1\right\}_{i \in I}\right)$.
(b) Show that the latter induces a Hopf algebra isomorphism $\widetilde{U}_{q=1}(\mathfrak{g}) /\left(\left\{K_{i}-1\right\}_{i \in I}\right) \simeq U(\mathfrak{g})$.

Part 3 (optional extra problems*)

9. Explicit construction of representations $L(\lambda)$ for minuscule dominant weights λ.

Recall that a nonzero dominant integral weight λ is called minuscule if $(\lambda, \alpha) \in\left\{-d_{\alpha}, 0, d_{\alpha}\right\}$ for any root α, where $d_{\alpha}:=\frac{(\alpha, \alpha)}{2}$.
(a) Verify that the weights of the simple $U_{q}(\mathfrak{g})$-module $L(\lambda)$ with the highest weight λ are precisely the conjugates of λ under the Weyl group W, each occurring with a multiplicity 1.

Let us now provide an explicit construction of such $L(\lambda)$. Consider a vector space L with a basis $\left\{x_{\mu}\right\}_{\mu \in W(\lambda)}$. We define endomorphisms $e_{i}, f_{i}, k_{i}(i \in I)$ of L as follows:

$$
k_{i}\left(x_{\mu}\right)=q^{\left(\alpha_{i}, \mu\right)} x_{\mu}, e_{i}\left(x_{\mu}\right)=\left\{\begin{array}{ll}
x_{s_{i}(\mu)} & \text { if }\left(\mu, \alpha_{i}\right)=-d_{\alpha_{i}} \\
0 & \text { otherwise }
\end{array}, f_{i}\left(x_{\mu}\right)= \begin{cases}x_{s_{i}(\mu)} & \text { if }\left(\mu, \alpha_{i}\right)=d_{\alpha_{i}} \\
0 & \text { otherwise }\end{cases}\right.
$$

for any $\mu \in W(\lambda)$.
(b) Show that the assignment $E_{i} \mapsto e_{i}, F_{i} \mapsto f_{i}, K_{i} \mapsto k_{i}$ defines an action of $U_{q}(\mathfrak{g})$ on L.
(c) Prove that $L \simeq L(\lambda)$. Verify that L is simple even if q is a root of unity.
(d) Derive explicit formulas for the vector representations in the classical types $A_{n}, B_{n}, C_{n}, D_{n}$.
10. Explicit construction of quantum analogues of the adjoint representations.

Consider a vector space L with a basis $\left\{x_{\gamma}\right\}_{\gamma \in \Delta} \cup\left\{h_{i}\right\}_{i \in I}$, where Δ denotes the root system of \mathfrak{g}. Define endomorphisms k_{i} of L via $k_{i}\left(h_{j}\right)=h_{j}, k_{i}\left(x_{\gamma}\right)=q^{\left(\alpha_{i}, \gamma\right)} x_{\gamma}$. Next, we define endomorphisms e_{i}, f_{i} of L as follows:

- $e_{i}\left(x_{\alpha_{i}}\right)=0, e_{i}\left(x_{-\alpha_{i}}\right)=h_{i}, e_{i}\left(h_{i}\right)=[2]_{q_{i}} x_{\alpha_{i}}, e_{i}\left(h_{j}\right)=\left[-d_{j}^{-1}\left(\alpha_{i}, \alpha_{j}\right)\right]_{q_{j}} \cdot x_{\alpha_{i}}$ for $j \neq i$,
- $f_{i}\left(x_{\alpha_{i}}\right)=h_{i}, f_{i}\left(x_{-\alpha_{i}}\right)=0, f_{i}\left(h_{i}\right)=[2]_{q_{i}} x_{-\alpha_{i}}, f_{i}\left(h_{j}\right)=\left[-d_{j}^{-1}\left(\alpha_{i}, \alpha_{j}\right)\right]_{q_{j}} \cdot x_{-\alpha_{i}}$ for $j \neq i$,
- All the remaining roots $\Delta \backslash\left\{ \pm \alpha_{i}\right\}$ split into α_{i}-strings of the form $\left\{\gamma, \gamma-\alpha_{i}, \ldots, \gamma-m \alpha_{i}\right\}$ with $\gamma+\alpha_{i}, \gamma-(m+1) \alpha_{i} \notin \Delta$ (note that $\left.m=d_{\alpha_{i}}^{-1} \cdot\left(\gamma, \alpha_{i}\right)\right)$. For each such α_{i}-string, define

$$
\begin{gathered}
e_{i}\left(x_{\gamma-k \alpha_{i}}\right)=\left\{\begin{array}{ll}
{[m+1-k]_{q_{i}} \cdot x_{\gamma-(k-1) \alpha_{i}}} & \text { if } 0<k \leq m \\
0 & \text { if } k=0
\end{array},\right. \\
f_{i}\left(x_{\gamma-k \alpha_{i}}\right)= \begin{cases}{[k+1]_{q_{i}} \cdot x_{\gamma-(k+1) \alpha_{i}}} & \text { if } 0 \leq k<m \\
0 & \text { if } k=m\end{cases}
\end{gathered}
$$

Verify that the assignment $E_{i} \mapsto e_{i}, F_{i} \mapsto f_{i}, K_{i} \mapsto k_{i}$ defines an action of $U_{q}(\mathfrak{g})$ on L (this is the quantum analogue of the adjoint representation).

