HOMEWORK 4 (DUE MARCH 15)

Part 1: Pick and write up solutions for any 2 problems among the ones below.

1. Verify the following equality for $n \in \mathbb{Z}_{>0}$ (used in the proof of [Lecture 19, Lemma 4]):

$$\sum_{r=0}^{n} (-1)^{n} {n \brack r}_{q} q^{\pm (1-n)r} = 0.$$

2. Verify that the following gives an action of a Hopf algebra *H* on itself (adjoint action):

ad:
$$H \curvearrowright H$$
 given by $\operatorname{ad}(x)y = \sum_{(x)} x'yS(x'')$

3. For any collections $p_i \in \mathbb{Z}$, $r_i, s_i \in \mathbb{Z}_{>0}$ (with $i \in I$ -the indexing set of simple roots of \mathfrak{g}) show that the operators E_i, F_i act locally nilpotently on the $U_q(\mathfrak{g})$ -module $U_q(\mathfrak{g})/J$, where Jis the left ideal of $U_q(\mathfrak{g})$ generated by $E_i^{r_i}, F_i^{s_i}, K_i - q_i^{p_i}$ (this is [Lectures 20-21, Lemma 6]).

4. Show that if $u \in U_q(\mathfrak{g})$ acts trivially on all finite-dimensional $U_q(\mathfrak{g})$ -modules, then u = 0. *Hint:* Try to argue similarly to our proof of [Lecture 18, Theorem 1], i.e. consider actions of $U_q(\mathfrak{g})$ on the tensor products of $\widetilde{L}(\lambda)$ and their twist by Cartan involution for $\lambda \gg 0$.

Part 2: Pick and write up solutions for any 2 problems among the ones below.

5. Recall the setup of Lecture 22: $K = \mathbb{Q}(v) \supset \mathbb{Q}[v, v^{-1}] = A$, V is either $L(\lambda)$ or $\widetilde{L}(\lambda)$ with λ being a dominant integral weight, and $V_A := \sum_{\mathfrak{I}} AF_{\mathfrak{I}}v_{\lambda}$. Verify that V_A is a free A-module, such that $V_A \otimes_A K \to V$ is an isomorphism, and show $\dim_K (V) = \operatorname{rk}_A (V_A) = \dim_{\mathbb{C}} (V \otimes_A \mathbb{C})$.

6. Complete the arguments in our proof of [Lecture 22, Theorem 2] by proving:

(a) $L(\lambda)^* \simeq L(-w_0\lambda)$ for any dominant integral weight λ .

Hint: If you don't know Weyl groups, treat $\mathfrak{g} = \mathfrak{sl}_n$ case with $w_0(\lambda_1, \ldots, \lambda_n) = (\lambda_n, \ldots, \lambda_1)$.

(b) $V \simeq (V^*)^*$ as $U_q(\mathfrak{g})$ -modules for any finite-dimensional module V.

Hint: The usual vector space isomorphism $V \xrightarrow{\sim} (V^*)^*$ from linear algebra does not intertwine $U_q(\mathfrak{g})$ -actions as the antipode is not involutive, but it can be fixed with a help of U_q^0 .

7. Consider an embedding $\mathbb{Q}(v) \hookrightarrow \mathbf{k}$ given by $v \mapsto q \in \mathbf{k}$, where q is transcendental over \mathbb{Q} . For a dominant integral weight λ , verify that $L(\lambda)_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k}$ is a simple module over $U_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k} \simeq U_{\mathbf{k}}$. Deduce the equality $L(\lambda)_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k} \simeq L(\lambda)_{\mathbf{k}}$.

8. (a) Generalize the results on $\widetilde{U}_q(\mathfrak{sl}_2)$ of Lecture 8 by defining an algebra $\widetilde{U}_q(\mathfrak{g})$ generated by $\{E_i, F_i, K_i^{\pm 1}, L_i\}_{i \in I}$ with an explicit list of the defining relations such that

• If $q^{2d_i} \neq 1 \ \forall i \in I$, then the assignment $E_i \mapsto E_i, F_i \mapsto F_i, K_i \mapsto K_i$ gives rise to an isomorphism $U_q(\mathfrak{g}) \xrightarrow{\sim} \widetilde{U}_q(\mathfrak{g})$,

• For q = 1, we have an isomorphism $\widetilde{U}_{q=1}(\mathfrak{g}) \simeq U(\mathfrak{g})[\{K_i\}_{i \in I}]/(\{K_i^2 - 1\}_{i \in I}).$

(b) Show that the latter induces a Hopf algebra isomorphism $\widetilde{U}_{q=1}(\mathfrak{g})/(\{K_i-1\}_{i\in I})\simeq U(\mathfrak{g})$.

Part 3 (optional extra problems*)

9. Explicit construction of representations $L(\lambda)$ for minuscule dominant weights λ .

Recall that a nonzero dominant integral weight λ is called *minuscule* if $(\lambda, \alpha) \in \{-d_{\alpha}, 0, d_{\alpha}\}$ for any root α , where $d_{\alpha} := \frac{(\alpha, \alpha)}{2}$.

(a) Verify that the weights of the simple $U_q(\mathfrak{g})$ -module $L(\lambda)$ with the highest weight λ are precisely the conjugates of λ under the Weyl group W, each occurring with a multiplicity 1.

Let us now provide an explicit construction of such $L(\lambda)$. Consider a vector space L with a basis $\{x_{\mu}\}_{\mu \in W(\lambda)}$. We define endomorphisms $e_i, f_i, k_i \ (i \in I)$ of L as follows:

$$k_i(x_{\mu}) = q^{(\alpha_i,\mu)} x_{\mu}, e_i(x_{\mu}) = \begin{cases} x_{s_i(\mu)} & \text{if } (\mu,\alpha_i) = -d_{\alpha_i} \\ 0 & \text{otherwise} \end{cases}, f_i(x_{\mu}) = \begin{cases} x_{s_i(\mu)} & \text{if } (\mu,\alpha_i) = d_{\alpha_i} \\ 0 & \text{otherwise} \end{cases}$$

for any $\mu \in W(\lambda)$.

- (b) Show that the assignment $E_i \mapsto e_i, F_i \mapsto f_i, K_i \mapsto k_i$ defines an action of $U_q(\mathfrak{g})$ on L.
- (c) Prove that $L \simeq L(\lambda)$. Verify that L is simple even if q is a root of unity.

(d) Derive explicit formulas for the vector representations in the classical types A_n, B_n, C_n, D_n .

10. Explicit construction of quantum analogues of the adjoint representations.

Consider a vector space L with a basis $\{x_{\gamma}\}_{\gamma \in \Delta} \cup \{h_i\}_{i \in I}$, where Δ denotes the root system of \mathfrak{g} . Define endomorphisms k_i of L via $k_i(h_j) = h_j, k_i(x_{\gamma}) = q^{(\alpha_i, \gamma)}x_{\gamma}$. Next, we define endomorphisms e_i, f_i of L as follows:

•
$$e_i(x_{\alpha_i}) = 0$$
, $e_i(x_{-\alpha_i}) = h_i$, $e_i(h_i) = [2]_{q_i} x_{\alpha_i}$, $e_i(h_j) = \left[-d_j^{-1}(\alpha_i, \alpha_j) \right]_{q_j} \cdot x_{\alpha_i}$ for $j \neq i$,

•
$$f_i(x_{\alpha_i}) = h_i, \ f_i(x_{-\alpha_i}) = 0, \ f_i(h_i) = [2]_{q_i} x_{-\alpha_i}, \ f_i(h_j) = \left[-d_j^{-1}(\alpha_i, \alpha_j) \right]_{q_j} \cdot x_{-\alpha_i} \text{ for } j \neq i,$$

• All the remaining roots $\Delta \setminus \{\pm \alpha_i\}$ split into α_i -strings of the form $\{\gamma, \gamma - \alpha_i, \ldots, \gamma - m\alpha_i\}$ with $\gamma + \alpha_i, \gamma - (m+1)\alpha_i \notin \Delta$ (note that $m = d_{\alpha_i}^{-1} \cdot (\gamma, \alpha_i)$). For each such α_i -string, define

$$e_i(x_{\gamma-k\alpha_i}) = \begin{cases} [m+1-k]_{q_i} \cdot x_{\gamma-(k-1)\alpha_i} & \text{if } 0 < k \le m \\ 0 & \text{if } k = 0 \end{cases}$$
$$f_i(x_{\gamma-k\alpha_i}) = \begin{cases} [k+1]_{q_i} \cdot x_{\gamma-(k+1)\alpha_i} & \text{if } 0 \le k < m \\ 0 & \text{if } k = m \end{cases}.$$

Verify that the assignment $E_i \mapsto e_i$, $F_i \mapsto f_i$, $K_i \mapsto k_i$ defines an action of $U_q(\mathfrak{g})$ on L (this is the quantum analogue of the *adjoint representation*).