HOMEWORK 5 (DUE APRIL 5)

Part 1: Pick and write up solutions for any 1 problem among the ones below.

1. Prove [Lecture 25, Lemma 5], that is, verify
$\operatorname{ad}\left(E_{i}\right)\left(y K_{\lambda} x\right)=y K_{\lambda}\left(q^{-\left(\lambda, \alpha_{i}\right)} E_{i} x-q^{\left(\mu-\nu, \alpha_{i}\right)} x E_{i}\right)+\frac{\left(q^{-\left(\nu-\alpha_{i}, \alpha_{i}\right)} r_{i}(y) K_{\lambda+\alpha_{i}}-r_{i}^{\prime}(y) K_{\lambda-\alpha_{i}}\right) x}{q_{i}-q_{i}^{-1}}$,
$\operatorname{ad}\left(F_{i}\right)\left(y K_{\lambda} x\right)=q^{-\left(\mu, \alpha_{i}\right)}\left(F_{i} y-q^{-\left(\lambda, \alpha_{i}\right)} y F_{i}\right) K_{\lambda+\alpha_{i}} x+\frac{y\left(q^{-\left(\mu-\alpha_{i}, \alpha_{i}\right)} K_{\lambda} r_{i}^{\prime}(x)-q^{-2\left(\mu-\alpha_{i}, \alpha_{i}\right)} K_{\lambda+2 \alpha_{i}} r_{i}(x)\right)}{q_{i}-q_{i}^{-1}}$
for any $i \in I, \lambda \in Q, x \in\left(U_{q}^{+}\right)_{\mu}, y \in\left(U_{q}^{-}\right)_{-\nu}$.
2. Complete the proof of [Lecture 26, Proposition 1] by verifying

$$
\left\langle\operatorname{ad}\left(F_{i}\right) v, v^{\prime}\right\rangle=\left\langle v, \operatorname{ad}\left(S\left(F_{i}\right)\right) v^{\prime}\right\rangle
$$

for any $i \in I$ and $v, v^{\prime} \in U_{q}(\mathfrak{g})$.
Part 2: Pick and write up solutions for any 1 problem among the ones below.
3. Verify that Proposition 1 of Lecture 26 is equivalent to the following result:

$$
\langle\cdot, \cdot\rangle: U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g}) \rightarrow \mathbf{k} \quad \text { is a } U_{q}(\mathfrak{g})-\text { module morphism. }
$$

4. Complete our argument in [Lecture 27, Proposition 1] by verifying that

$$
u \mapsto \operatorname{tr}_{L(\lambda)}\left(u K_{-2 \rho}\right) \quad \text { gives rise to a } U_{q}(\mathfrak{g}) \text { - module morphism } \quad U_{q}(\mathfrak{g}) \rightarrow \mathbf{k} .
$$

Part 3: Pick and write up solutions for any 2 problems among the ones below.
5. Complete the proof of [Lecture 28, पemma 2] by verifying the following equality:

$$
\left(1 \otimes F_{j}\right) \Theta_{\mu}+\left(F_{j} \otimes K_{j}^{-1}\right) \Theta_{\mu-\alpha_{j}}=\Theta_{\mu}\left(1 \otimes F_{j}\right)+\Theta_{\mu-\alpha_{j}}\left(F_{j} \otimes K_{j}\right) .
$$

6. Complete the proof of [Lecture 28, Lemma 3] by verifying the following equality:

$$
(\operatorname{id} \otimes \Delta) \Theta_{\mu}=\sum_{0 \leq \nu \leq \mu}\left(\Theta_{\mu-\nu}\right)_{12}\left(1 \otimes K_{\nu} \otimes 1\right)\left(\Theta_{\nu}\right)_{13}
$$

7. Assuming \mathbf{k} contains appropriate roots of q, determine all maps $f: P \times P \rightarrow \mathbf{k}$ satisfying

$$
\begin{aligned}
& f(\lambda+\eta, \mu)=q^{-(\eta, \mu)} f(\lambda, \mu), f(\lambda, \mu+\eta)=q^{-(\eta, \lambda)} f(\lambda, \mu), \\
& f(\lambda+\nu, \mu)=f(\lambda, \mu) f(\nu, \mu), f(\lambda, \mu+\nu)=f(\lambda, \mu) f(\lambda, \nu)
\end{aligned}
$$

for any $\lambda, \mu, \nu \in P$ and $\eta \in Q$.
8. Consider the simplest case $\mathfrak{g}=\mathfrak{s l}_{2}, M=M^{\prime}=V=L(1,+)$ with $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbf{k}$ determined by $f(1,1)=q^{-1}$, and let $R=\Theta^{f} \circ \tau$.
(a) Verify that $R^{2}=\left(q^{-1}-q\right) R+1$, or equivalently, $\left(q R^{-1}\right)^{2}=\left(q^{2}-1\right)\left(q R^{-1}\right)+q^{2}$.
(b) Deduce that the operators $\left\{R_{i}^{\prime}\right\}_{i=1}^{r-1} \subset \operatorname{End}\left(V^{\otimes r}\right)$ given by $R_{i}^{\prime}=q R_{i}^{-1}$ satisfy

$$
R_{i}^{\prime} R_{i+1}^{\prime} R_{i}^{\prime}=R_{i+1}^{\prime} R_{i}^{\prime} R_{i+1}^{\prime}, R_{i}^{\prime} R_{j}^{\prime}=R_{j}^{\prime} R_{i}^{\prime}(j \neq i, i \pm 1),\left(R_{i}^{\prime}\right)^{2}=\left(q^{2}-1\right) R_{i}^{\prime}+q^{2} .
$$

In other words, $\left\{R_{i}^{\prime}\right\}_{i=1}^{r-1}$ define a representation of the type A_{r-1} Hecke algebra on $V^{\otimes r}$.

