HOMEWORK 6 (DUE APRIL 19)

Part 1: Pick and write up solutions for any 1 problem among the ones below.

1. Endow $k_{q}[G]$ from Lecture 29 with a natural Hopf algebra structure.
2. In the simplest case $G=\mathrm{SL}(2)$, verify:
(a) $k_{q}[\mathrm{SL}(2)]$ is generated by the matrix coefficients corresponding to $M=L(1,+)$.
(b) the corresponding four matrix coefficients from (a) satisfy the defining relations of $\mathrm{SL}_{q^{-1}}(2)$ from Lecture 6, thus giving rise to a surjective homomorphism $\phi: \mathrm{SL}_{q^{-1}}(2) \rightarrow k_{q}[\mathrm{SL}(2)]$.
(c) the homomorphism ϕ from (b) is actually a Hopf algebra isomorphism.

Part 2: Pick and write up solutions for any 2 problems among the ones below.
3. (a) Verify the following algebraic equality:

$$
\sum_{0 \leq a, c \leq i}(-1)^{b+j} q^{ \pm(b-a c-j(i+1))}\left[\begin{array}{c}
i \\
a
\end{array}\right]_{q}\left[\begin{array}{c}
j+c \\
c
\end{array}\right]_{q}\left[\begin{array}{c}
j+a \\
i-c
\end{array}\right]_{q}=1 \text { with } b=a+c+j-i .
$$

Hint: You may want to prove first $\left[\begin{array}{c}a+b \\ k\end{array}\right]_{q}=\sum_{i=0}^{k} q^{a i-b(k-i)}\left[\begin{array}{c}b \\ i\end{array}\right]_{q}\left[\begin{array}{c}a \\ k-i\end{array}\right]_{q}$ for any $a, b, k \geq 0$.
(b) Complete the proof of [Lecture 30, Lemma 1(a, b)].
4. Prove [Lecture 31, Lemma 2] by induction on p (the base case $p=1$ treated in class).
5. Given $i \neq j \in I$, a finite-dimensional $U_{q}(\mathfrak{g})$-module V of type 1 , and $v \in V$, verify that

$$
T_{i}\left(E_{j} v\right)=\left(\operatorname{ad}\left(E_{i}^{(r)}\right) E_{j}\right)\left(T_{i}(v)\right) \quad \text { where } r:=-2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right),
$$

thus establishing the first equality of [Lecture 31, Proposition 1].
6. Let σ denote the antiautomorphism of $U_{q}(\mathfrak{g})$ from Lecture 28, and consider an algebra homomorphism ${ }^{\sigma}$ ad: $U_{q}(\mathfrak{g}) \rightarrow \operatorname{End}_{\mathbf{k}}\left(U_{q}(\mathfrak{g})\right)$ given by $x \mapsto \sigma \circ \operatorname{ad}(x) \circ \sigma$.
(a) Prove $T_{i}\left({ }^{\sigma} \operatorname{ad}\left(E_{i}\right) u\right)=\operatorname{ad}\left(F_{i}\right) T_{i}(u)$ and $T_{i}\left({ }^{\sigma} \operatorname{ad}\left(F_{i}\right) u\right)=\operatorname{ad}\left(E_{i}\right) T_{i}(u)$ for any $u \in U_{q}(\mathfrak{g})$.
(b) Prove $T_{i}\left({ }^{\sigma} \operatorname{ad}\left(E_{i}^{(m)}\right) E_{j}\right)=\operatorname{ad}\left(E_{i}\right)^{(r-m)} E_{j}$ for any $i \neq j$ and $r=-2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right)$.
(c) Derive explicit formulas for $T_{i}^{-1}\left(E_{j}\right)$ and $T_{i}^{-1}\left(F_{j}\right)$ stated in the end of Lecture 31.

Part 3: Pick and write up solutions for any 1 problem among the ones below.
7. Given $i \neq j \in I$ such that $s_{i} s_{j} \overline{\in W}$ is of order 4 , prove $T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i}$ in $\operatorname{Aut}\left(U_{q}(\mathfrak{g})\right)$, thus establishing the corresponding case of [Lecture 32, Theorem 1].
8. Given $i \neq j \in I$ such that $s_{i} s_{j} \in W$ is of order 4 , and $w \in\left\langle s_{i}, s_{j}\right\rangle \subset W$ satisfying $w\left(\alpha_{i}\right)>0$, verify that $T_{w}\left(E_{i}\right) \in\left\langle E_{i}, E_{j}\right\rangle \subset U_{q}^{+}$, and furthermore $T_{w}\left(E_{i}\right)=E_{k}$ if $w\left(\alpha_{i}\right)=\alpha_{k}$, thus establishing the corresponding case of [Lecture 32, Lemma 1].
9. Given $i \neq j \in I$ such that $s_{i} s_{j} \in W$ is of order 4, verify that

$$
\operatorname{span}\left\{T_{i} T_{j} T_{i}\left(E_{j}\right)^{a_{4}} \cdot T_{i} T_{j}\left(E_{i}\right)^{a_{3}} \cdot T_{i}\left(E_{j}\right)^{a_{2}} \cdot E_{i}^{a_{1}} \mid a_{1}, a_{2}, a_{3}, a_{4} \geq 0\right\}=\left\langle E_{i}, E_{j}\right\rangle
$$

thus establishing the corresponding case of [Lecture 33, Lemma 1].

