HOMEWORK 7 (DUE APRIL 26)

Part 1: Pick and write up solutions for any 2 problems among the ones below.

1. Exercise 5 in XI. 6 of Kassel's textbook.
2. Exercise 7 in XI. 6 of Kassel's textbook.
3. Exercise 8 in XI. 6 of Kassel's textbook.
4. Exercise 9 in XI. 6 of Kassel's textbook.

Part 2: Pick and write up solutions for any 1 problem among the ones below.
5. Exercise 1 in X. 7 of Kassel's textbook.

In other words, show that the center of the braid group $B_{n}(n>2)$ is an infinite cyclic group generated by $\left(\sigma_{1} \ldots \sigma_{n-1}\right)^{n}$, and draw the corresponding element as a braid on n strands.
6. Exercise 5 in X. 7 of Kassel's textbook.

To slightly reformulate the question, he is asking to show that if L and L^{\prime} are diagrams connected by a Reidemeister transformation, and you use the Kauffmann bracket to write:

$$
\langle L\rangle=x\left\langle L_{0}\right\rangle+x^{-1}\left\langle L_{\infty}\right\rangle, \quad\left\langle L^{\prime}\right\rangle=x\left\langle L_{0}^{\prime}\right\rangle+x^{-1}\left\langle L_{\infty}^{\prime}\right\rangle
$$

(see X. 8 of the textbook for the notation), then the link diagrams L_{0} and L_{0}^{\prime} are also connected by Reidemeister transformations, as are L_{∞} and L_{∞}^{\prime}.

Part 3: Pick and write up solutions for any 1 problem among the ones below.
7. Exercise 1 in XII. 6 of Kassel's textbook.
8. Exercise 3 in XII. 6 of Kassel's textbook.

