HOMEWORK 1 (DUE JANUARY 28)

1. (a) Verify that the bilinear map $\omega \colon W \otimes W \to \mathbb{C}$ defined via $\omega(L_n, L_m) = (n^3 - n)\delta_{n,-m}$ defines a 2-cocycle on the Witt algebra W. Prove that it is not a 2-coboundary.

(b) Let \mathfrak{g} be a finite dimensional Lie algebra with a nontrivial invariant symmetric bilinear form (\cdot, \cdot) . Verify that the bilinear map $\omega \colon \mathfrak{g}[t, t^{-1}] \otimes \mathfrak{g}[t, t^{-1}] \to \mathbb{C}$ defined via $\omega(F, G) = \operatorname{Res}_{t=0}(dF, G)$ for $F, G \in \mathfrak{g}[t, t^{-1}]$ defines a 2-cocycle on the loop algebra $\mathfrak{g}[t, t^{-1}]$. Prove that it is not a 2-coboundary.

Note: This exercise completes our proofs of Theorems 1 and 2 from Lecture 2.

2. Consider the setup from Lecture 2: L is a Lie algebra, $\overline{L} \subset L$ is a Lie subalgebra, $M \subset L$ is an \overline{L} -submodule. Given a 2-cocycle $\omega \in Z^2(L)$, define $\varphi : \overline{L} \to M^*$ via

$$\varphi(x)(m) := \omega(x,m) \quad \forall m \in M.$$

Verify that $\varphi \in Z^1(\overline{L}, M^*)$, i.e. φ is a 1-cocycle.

Recall that a representation of a Lie algebra \mathfrak{g} is a vector space V together with

a linear map $\rho \colon \mathfrak{g} \to \operatorname{End}(V)$ s.t. $\rho([x, y]) = \rho(x)\rho(y) - \rho(y)\rho(x) \ \forall x, y \in \mathfrak{g}$.

3. (a) Show that the Witt algebra W is a simple Lie algebra (i.e. it has no proper ideals).

(b) Deduce that W has no nontrivial finite dimensional representations.

4. For $\alpha, \beta \in \mathbb{C}$, let $V_{\alpha,\beta}$ be the vector space of formal expressions $g(t)t^{\alpha}(dt)^{\beta}$ with $g \in \mathbb{C}[t, t^{-1}]$ (tensor fields of rank β and branching α on the punctured complex plane \mathbb{C}^{\times}).

(a) Show that the formula

$$f\partial_t \circ gt^{\alpha}(dt)^{\beta} = (fg' + \alpha t^{-1}fg + \beta f'g)t^{\alpha}(dt)^{\beta}$$

defines an action of W on $V_{\alpha,\beta}$.

(b) Choose a basis $\{v_k\}_{k\in\mathbb{Z}}$ of $V_{\alpha,\beta}$ via $v_k := t^{k+\alpha}(dt)^{\beta}$. Verify

$$L_n(v_k) = -(k + \alpha + (n+1)\beta)v_{k+n}.$$