HOMEWORK 2 (DUE FEBRUARY 4)

1. Recall the representations $V_{\alpha, \beta}$ of the Witt algebra W from Homework 1.
(a) Find the necessary and sufficient conditions on ($\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$) under which $V_{\alpha, \beta} \simeq V_{\alpha^{\prime}, \beta^{\prime}}$.
(b) Find the necessary and sufficient conditions on (α, β) under which $V_{\alpha, \beta}$ is irreducible.
2. Recall the Fock modules F_{μ} of the oscillator algebra \mathcal{A} from Lecture 3 .
(a) Construct an infinite-dimensional irreducible \mathcal{A}-representation, not isomorphic to any F_{μ}.
(b) For any \mathcal{A}-representation V, let $V[0]=\left\{v \in V \mid K(v)=v, a_{0}(v)=\mu v, a_{n}(v)=0 \forall n>0\right\}$. Construct a natural \mathcal{A}-module homomorphism $F_{\mu} \otimes V[0] \rightarrow V$ and prove that it is injective.
3. (a) Consider the \mathbb{Z}-grading of $\mathfrak{g}=\mathfrak{s l}_{n}$ with $\operatorname{deg}\left(E_{i j}\right)=j-i$ (in particular, diagonal matrices are of degree 0). Verify that it is a non-degenerate \mathbb{Z}-graded Lie algebra.
(b) Consider the \mathbb{Z}-grading of $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ with $\operatorname{deg}\left(E_{i j} t^{k}\right)=j-i+n k, \operatorname{deg} K=0$. Verify that it is a non-degenerate \mathbb{Z}-graded Lie algebra, while $\mathfrak{g}\left[t, t^{-1}\right]$ itself is not.

Note: Both statements hold for any simple finite dimensional \mathfrak{g} and the principal grading.
4. (a) Let \mathfrak{a} be a Lie algebra, \mathfrak{b} be a Lie subalgebra of \mathfrak{a}, M be a \mathfrak{b}-module, N be an \mathfrak{a}-module. Prove that

$$
\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{a}}(M) \otimes N \simeq \operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{a}}\left(M \otimes \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{a}}(N)\right) \text { as } \mathfrak{a}-\text { modules } .
$$

(b) Let \mathfrak{c} be a Lie algebra, $\mathfrak{a}, \mathfrak{b}$ be two Lie subalgebras of \mathfrak{c} such that $\mathfrak{a}+\mathfrak{b}=\mathfrak{c}$. Note that $\mathfrak{a} \cap \mathfrak{b}$ is also a Lie subalgebra of \mathfrak{c}. Let M be a \mathfrak{b}-module. Prove that

$$
\operatorname{Res}_{\mathfrak{a}}^{\mathfrak{c}}\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{c}}(M)\right) \simeq \operatorname{Ind}_{\mathfrak{a} \cap \mathfrak{b}}^{\mathfrak{a}}\left(\operatorname{Res}_{\mathfrak{a} \cap \mathfrak{b}}^{\mathfrak{b}}(M)\right) \text { as } \mathfrak{a} \text {-modules. }
$$

Hint: You may wish to use $U(\mathfrak{a}) \otimes_{U(\mathfrak{a} \cap \mathfrak{b})} U(\mathfrak{b}) \simeq U(\mathfrak{c})$ both as left \mathfrak{a} and right \mathfrak{b} modules.
5^{\star}. Complete the proof of Proposition 3(b) from Lecture 3 by proving that the corresponding \mathcal{A}-module $\operatorname{Diff}\left(x_{1}, x_{2}, \ldots\right) /\left(\operatorname{Diff}\left(x_{1}, x_{2}, \ldots\right) \cdot I_{v}\right)$ is of finite length with all composition factors isomorphic to the Fock module F_{μ}.

Hint: Construct a flag of subspaces $I_{v}=J_{N} \subset J_{N-1} \subset \ldots \subset J_{1} \subset J_{0}=\mathbb{C}\left[a_{1}, a_{2}, \ldots\right]$ such that $\operatorname{dim}\left(J_{k} / J_{k+1}\right)=1$ and $a_{\ell}\left(J_{k}\right) \subset J_{k+1}$ for any $\ell \geq 1$ and $0 \leq k<N$, and consider the corresponding flag $D_{N} \subset D_{N-1} \subset \ldots \subset D_{0}=\operatorname{Diff}\left(x_{1}, x_{2}, \ldots\right)$ with $D_{k}=\operatorname{Diff}\left(x_{1}, x_{2}, \ldots\right) \cdot J_{k}$.

