HOMEWORK 2 (DUE FEBRUARY 4)

1. Recall the representations $V_{\alpha,\beta}$ of the Witt algebra W from Homework 1.

(a) Find the necessary and sufficient conditions on $(\alpha, \beta, \alpha', \beta')$ under which $V_{\alpha,\beta} \simeq V_{\alpha',\beta'}$.

(b) Find the necessary and sufficient conditions on (α, β) under which $V_{\alpha,\beta}$ is irreducible.

2. Recall the Fock modules F_{μ} of the oscillator algebra \mathcal{A} from Lecture 3.

(a) Construct an infinite-dimensional irreducible \mathcal{A} -representation, not isomorphic to any F_{μ} . (b) For any \mathcal{A} -representation V, let $V[0] = \{v \in V | K(v) = v, a_0(v) = \mu v, a_n(v) = 0 \forall n > 0\}.$

Construct a natural \mathcal{A} -module homomorphism $F_{\mu} \otimes V[0] \to V$ and prove that it is injective.

3. (a) Consider the \mathbb{Z} -grading of $\mathfrak{g} = \mathfrak{sl}_n$ with $\deg(E_{ij}) = j - i$ (in particular, diagonal matrices are of degree 0). Verify that it is a non-degenerate \mathbb{Z} -graded Lie algebra.

(b) Consider the \mathbb{Z} -grading of $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$ with $\deg(E_{ij}t^k) = j - i + nk, \deg K = 0$. Verify that it is a non-degenerate \mathbb{Z} -graded Lie algebra, while $\mathfrak{g}[t, t^{-1}]$ itself is not.

Note: Both statements hold for any simple finite dimensional \mathfrak{g} and the principal grading.

4. (a) Let \mathfrak{a} be a Lie algebra, \mathfrak{b} be a Lie subalgebra of \mathfrak{a} , M be a \mathfrak{b} -module, N be an \mathfrak{a} -module. Prove that

 $\operatorname{Ind}_{h}^{\mathfrak{a}}(M) \otimes N \simeq \operatorname{Ind}_{h}^{\mathfrak{a}}(M \otimes \operatorname{Res}_{h}^{\mathfrak{a}}(N))$ as \mathfrak{a} -modules.

(b) Let \mathfrak{c} be a Lie algebra, $\mathfrak{a}, \mathfrak{b}$ be two Lie subalgebras of \mathfrak{c} such that $\mathfrak{a} + \mathfrak{b} = \mathfrak{c}$. Note that $\mathfrak{a} \cap \mathfrak{b}$ is also a Lie subalgebra of \mathfrak{c} . Let M be a \mathfrak{b} -module. Prove that

 $\mathrm{Res}^{\mathfrak{c}}_{\mathfrak{a}}(\mathrm{Ind}^{\mathfrak{c}}_{\mathfrak{b}}(M))\simeq\mathrm{Ind}^{\mathfrak{a}}_{\mathfrak{a}\cap\mathfrak{b}}(\mathrm{Res}^{\mathfrak{b}}_{\mathfrak{a}\cap\mathfrak{b}}(M)) \ \text{ as } \ \mathfrak{a}\mathrm{-modules}.$

Hint: You may wish to use $U(\mathfrak{a}) \otimes_{U(\mathfrak{a} \cap \mathfrak{b})} U(\mathfrak{b}) \simeq U(\mathfrak{c})$ both as left \mathfrak{a} and right \mathfrak{b} modules.

5^{*}. Complete the proof of Proposition 3(b) from Lecture 3 by proving that the corresponding \mathcal{A} -module Diff $(x_1, x_2, \ldots)/(\text{Diff}(x_1, x_2, \ldots) \cdot I_v)$ is of finite length with all composition factors isomorphic to the Fock module F_{μ} .

Hint: Construct a flag of subspaces $I_v = J_N \subset J_{N-1} \subset \ldots \subset J_1 \subset J_0 = \mathbb{C}[a_1, a_2, \ldots]$ such that dim $(J_k/J_{k+1}) = 1$ and $a_\ell(J_k) \subset J_{k+1}$ for any $\ell \ge 1$ and $0 \le k < N$, and consider the corresponding flag $D_N \subset D_{N-1} \subset \ldots \subset D_0 = \text{Diff}(x_1, x_2, \ldots)$ with $D_k = \text{Diff}(x_1, x_2, \ldots) \cdot J_k$.