HOMEWORK 3 (DUE FEBRUARY 11)

- 1. Is it true that any submodule of the Verma \mathfrak{g} -module M_{λ} is graded when \mathfrak{g} is:
- (a) the Heisenberg algebra (with deg $a_k = k$);
- (b) the Virasoro algebra (with deg $L_k = k$);
- (c) a finite-dimensional simple Lie algebra (with the principal \mathbb{Z} -grading).
- 2. Let $\phi: M_{\lambda} \to M_{\mu}$ be a nonzero homomorphism of Verma modules over a \mathbb{Z} -graded Lie algebra \mathfrak{g} (with an abelian \mathfrak{g}_0). Prove that ϕ is injective.

Hint: You may wish to use the PBW theorem (stated in the form gr $U(\mathfrak{n}_{-}) \simeq S(\mathfrak{n}_{-})$).

3. Let \mathfrak{g} be a Lie algebra over \mathbb{C} with a <u>real structure</u> \dagger . Define

$$\mathfrak{g}_{\mathbb{R}} := \{ a \in \mathfrak{g} | a^{\dagger} = -a \}$$

It is usually called the <u>real form</u> of \mathfrak{g} , due to the following result:

(a) Prove that $\mathfrak{g}_{\mathbb{R}}$ is a Lie algebra over \mathbb{R} and $\mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathfrak{g}$ as Lie algebras over \mathbb{C} .

Assume now that \mathfrak{g} is \mathbb{Z} -graded, $\mathfrak{g} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_k$, and $\mathfrak{g}_k^{\dagger} = \mathfrak{g}_{-k}$.

- (b) Verify that $\overline{(M_{-\lambda}^-)^{-\dagger}} \simeq M_{\lambda}^+$ as modules over \mathfrak{g} iff λ is <u>real</u> (that is, $\lambda \in \mathfrak{g}_{0,\mathbb{R}}^*$).
- (c) Prove that M⁺_λ has a nonzero hermitian form iff λ is real. Note: Part (c) is exactly Lemma 4 from Lecture 6.
- 4. Recall the notion of the <u>character</u> for any module $V \in \mathcal{O}^+$ (Lecture 6):

$$\operatorname{ch}_V(q,x) := \sum_{d \in \mathbb{C}} q^{-d} \operatorname{Tr}_{V[d]}(e^x)$$

where q is a formal variable and $x \in \mathfrak{h} = \mathfrak{g}_0$. Prove the formula (stated in Lecture 6):

$$\operatorname{ch}_{M_{\lambda}}(q, x) = \frac{e^{\lambda(x)}}{\prod_{k>0} \operatorname{det}_{\mathfrak{g}_{-k}}(1 - q^{k} e^{\operatorname{ad}(x)})}$$

where the \mathbb{C} -grading on the Verma module M_{λ} is such that deg $v_{\lambda}^{+} = 0$.

Hint: Use the PBW theorem $(M_{\lambda} \simeq S(\mathfrak{n}_{-}) \text{ as } \mathbb{Z}\text{-graded vector spaces})$ together with

$$\sum_{n\geq 0} q^n \operatorname{Tr}_{S^n V}(S^n A) = \frac{1}{\det(1-qA)}$$

valid for any endomorphism A of a finite-dimensional vector space V.