## HOMEWORK 4A (DUE FEBRUARY 25)

1. Let $\lambda, \mu \in \mathbb{C}$ and $\mathbf{i}:=\sqrt{-1}$. Recall linear operators $\left\{\widetilde{L}_{n}\right\}_{n \in \mathbb{Z}}$ acting on $F_{\mu}$ from Lecture 7 :

$$
\begin{aligned}
& \widetilde{L}_{n}=\frac{1}{2} \sum_{j \in \mathbb{Z}} a_{-j} a_{n+j}+\mathbf{i} \lambda n a_{n} \text { if } n \neq 0 \\
& \widetilde{L}_{0}=\frac{\lambda^{2}+\mu^{2}}{2}+\sum_{j>0} a_{-j} a_{j}
\end{aligned}
$$

(a) Verify the following equality in $\operatorname{End}\left(F_{\mu}\right)$ (for any $m, n \in \mathbb{Z}$ ):

$$
\left[\widetilde{L}_{n}, a_{m}\right]=-m a_{n+m}+\mathbf{i} \lambda m^{2} \delta_{m,-n} \mathrm{Id}
$$

(b) Show that $\widetilde{L}_{n}$ define an action of Vir on $F_{\mu}$ with the central charge $c=1+12 \lambda^{2}$, i.e.

$$
\left[\widetilde{L}_{n}, \widetilde{L}_{m}\right]=(n-m) \widetilde{L}_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12}\left(1+12 \lambda^{2}\right)
$$

for any $m, n \in \mathbb{Z}$.
Note: This proves Proposition 1 of Lecture 7.
2. Let $\delta \in\{0,1 / 2\}$. Recall the algebra $C_{\delta}$ (generated by the fermions $\left\{\psi_{j}\right\}_{j \in \delta+\mathbb{Z}}$ ) acting on the vector space $V_{\delta}$ (polynomials in anticommuting variables $\left\{\xi_{j}\right\}_{j \in \delta+\mathbb{Z} \geq 0}$ ) from Lecture 8 . We also recall linear operators $\left\{L_{n}\right\}_{n \in \mathbb{Z}}$ acting on $V_{\delta}$ via

$$
L_{n}=\delta_{n, 0} \frac{1-2 \delta}{16}+\frac{1}{2} \sum_{j \in \delta+\mathbb{Z}} j: \psi_{-j} \psi_{n+j}:
$$

where the normal ordering is defined by

$$
: \psi_{i} \psi_{j}:= \begin{cases}\psi_{i} \psi_{j} & \text { if } i \leq j \\ -\psi_{j} \psi_{i} & \text { if } i>j\end{cases}
$$

(a) Verify the following equality in $\operatorname{End}\left(V_{\delta}\right)$ (for any $m \in \delta+\mathbb{Z}, n \in \mathbb{Z}$ ):

$$
\left[\psi_{m}, L_{n}\right]=\left(m+\frac{n}{2}\right) \psi_{m+n}
$$

(b) Show that $L_{n}$ define an action of Vir on $V_{\delta}$ with the central charge $c=\frac{1}{2}$, i.e.

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{24}
$$

for any $m, n \in \mathbb{Z}$.
Note: This proves Proposition 1 of Lecture 8.

