
HOMEWORK 4B (DUE FEBRUARY 25)

Given an associative algebra C, a (C-valued) quantum field is a formal bi-infinite power series

A(z) =
∑
n∈Z

Anz
−n−1 with An ∈ C

We split such A(z) into two parts A(z) = A+(z) +A−(z) via:1

A+(z) =
∑
n≤−1

Anz
−n−1 ∈ C[[z]] and A−(z) =

∑
n≥0

Anz
−n−1 ∈ z−1C[[z−1]]

Given two quantum fields A(z), B(z) ∈ C[[z, z−1]], define their normally ordered product via:

: A(z)B(w) : = A+(z)B(w) +B(w)A−(z)

1. Let a(z) =
∑

n∈Z anz
−n−1, T (z) =

∑
n∈Z Lnz

−n−2 be the quantum fields with coefficients
in the universal enveloping of the Heisenberg (A) and Virasoro (Vir) algebras, respectively.

(a) Compute the difference a(z)a(w) − : a(z)a(w) : on the Fock representation Fµ. Present
the corresponding power series by rational functions (depending only on z − w).

(b) Evaluate the difference T (z)a(w) − : T (z)a(w) : on the Fock representation Fµ, viewed
as a Vir nA-module. Present the answer as a linear combination of a(w) and its derivatives
with coefficients being rational functions in z − w.

(c) Evaluate the difference T (z)T (w) − : T (z)T (w) : on the highest weight Vir representation
with central charge c. Present the answer as a linear combination of T (w) and its derivatives
with coefficients being rational functions in z − w.

Recall the delta-function from Lecture 8:

δ(w − z) =
∑
n∈Z

z−n−1wn =
1

z − w
+

1

w − z

where 1
z−w denotes the power series expansion of the rational function in |z| � |w|:

1

z − w
=

∑
n≥0

z−n−1wn

2. Express [a(z), a(w)], [T (z), a(w)], [T (z), T (w)] via a(z), T (z), δ(w− z) and its derivatives.

3?. Let F0 be the Fock module of A, 1 ∈ F0 denote the highest weight vector, 1 ∈ F ∗0 denote
the lowest weight vector of the dual representation, and a(z) be as in Problem 1. Prove:〈

1∗, a(z1) · · · a(z2n)1
〉

=
∑

{σ∈S2n : σ2=1, σ(i)6=i ∀i}

∏
i<σ(i)

1

(zi − zσ(i))2

1Note that this is the only splitting compatible with ∂z ∈ EndC[[z, z−1]].
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4?. This Problem outlines a proof of Theorem 1 from Lecture 4 stating that for a non-
degenerate Z-graded Lie algebra g and any n ≥ 0, the restriction

(·, ·)λ : M+
λ [−n]×M−−λ[n] −→ C is nondegenerate for generic λ ∈ h∗

Identifying M±±λ[∓n] ' U(n∓)[∓n] and choosing some fixed bases of the latter, this reduces

to a non-vanishing of the corresponding determinant, denoted det(·, ·)gλ,n. The key idea will

be to degenerate g to a “generalized Heisenberg algebra” where the proof is more feasible.

Step 1 (degeneration process): Consider the Z-graded Lie algebra gε =
⊕

n∈Z g
ε
n with gεn = gn

as vector spaces, and with the Lie bracket defined via

[x, y]ε = [x, y] · ε1+δn,0+δm,0−δn+m,0 for any x ∈ gεn, y ∈ gεm

For ε 6= 0, show that the following linear map is a Lie algebra isomorphism

ϕε : g
ε → g with x 7→ ε1+δn,0x for x ∈ gεn

Show that
(xv+,g

ε

λ , yv−,g
ε

−λ )λ = (ϕε(x)v+,g
λ/ε2

, ϕε(y)v−,g−λ/ε2)λ/ε2

for any x ∈ U(n−), y ∈ U(n+). Restricting to degree ±n components, deduce:

det(·, ·)g
ε

λ,n = εNdet(·, ·)g
λ/ε2,n

for some N ∈ Z≥0.

Conclusion: Deduce that the leading term of det(·, ·)gλ,n = det(·, ·)g
1

λ,n equals det(·, ·)g
0

λ,n.

Therefore, it suffices to prove the non-vanishing of det(·, ·)g
0

λ,n for generic λ ∈ h∗.

Step 2 (degenerated version explicitly): Note that g0 =
⊕

n∈Z gn as vector spaces with

[x, y]g0 =

{
[x, y] if deg(x) + deg(y) = 0

0 otherwise

for homogeneous elements x, y (hence, we call g0 a “generalized Heisenberg algebra”). Note
that n± =

⊕
n>0 g

0
±n are abelian, so that U(n±) ' S(n±).

Verify that the g-invariant form (·, ·)g
0

λ : S(n−)× S(n+)→ C is given by

(1) (a1 . . . ak, b1 . . . bl) = δk,l
∑

σ∈S(k)

λ([a1, bσ(1)]) · · ·λ([ak, bσ(k)]) with λ|g6=0
= 0

Step 3 (verification for g0): Use formula (1) to show that det(·, ·)g
0

λ,n 6= 0 for generic λ ∈ h∗.


