HOMEWORK 4B (DUE FEBRUARY 25)

Given an associative algebra \mathcal{C}, a (\mathcal{C}-valued) quantum field is a formal bi-infinite power series

$$
A(z)=\sum_{n \in \mathbb{Z}} A_{n} z^{-n-1} \quad \text { with } A_{n} \in \mathcal{C}
$$

We split such $A(z)$ into two parts $A(z)=A_{+}(z)+A_{-}(z)$ via: ${ }^{1}$

$$
A_{+}(z)=\sum_{n \leq-1} A_{n} z^{-n-1} \in \mathcal{C}[[z]] \text { and } A_{-}(z)=\sum_{n \geq 0} A_{n} z^{-n-1} \in z^{-1} \mathcal{C}\left[\left[z^{-1}\right]\right]
$$

Given two quantum fields $A(z), B(z) \in \mathcal{C}\left[\left[z, z^{-1}\right]\right]$, define their normally ordered product via:

$$
: A(z) B(w):=A_{+}(z) B(w)+B(w) A_{-}(z)
$$

1. Let $a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, T(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}$ be the quantum fields with coefficients in the universal enveloping of the Heisenberg (\mathcal{A}) and Virasoro (Vir) algebras, respectively.
(a) Compute the difference $a(z) a(w)-: a(z) a(w)$: on the Fock representation F_{μ}. Present the corresponding power series by rational functions (depending only on $z-w$).
(b) Evaluate the difference $T(z) a(w)-: T(z) a(w)$: on the Fock representation F_{μ}, viewed as a Vir $\ltimes \mathcal{A}$-module. Present the answer as a linear combination of $a(w)$ and its derivatives with coefficients being rational functions in $z-w$.
(c) Evaluate the difference $T(z) T(w)-: T(z) T(w)$: on the highest weight Vir representation with central charge c. Present the answer as a linear combination of $T(w)$ and its derivatives with coefficients being rational functions in $z-w$.

Recall the delta-function from Lecture 8:

$$
\delta(w-z)=\sum_{n \in \mathbb{Z}} z^{-n-1} w^{n}=\frac{1}{z-w}+\frac{1}{w-z}
$$

where $\frac{1}{z-w}$ denotes the power series expansion of the rational function in $|z| \gg|w|$:

$$
\frac{1}{z-w}=\sum_{n \geq 0} z^{-n-1} w^{n}
$$

2. Express $[a(z), a(w)],[T(z), a(w)],[T(z), T(w)]$ via $a(z), T(z), \delta(w-z)$ and its derivatives.
3^{\star}. Let F_{0} be the Fock module of $\mathcal{A}, 1 \in F_{0}$ denote the highest weight vector, $1 \in F_{0}^{*}$ denote the lowest weight vector of the dual representation, and $a(z)$ be as in Problem 1. Prove:

$$
\left\langle 1^{*}, a\left(z_{1}\right) \cdots a\left(z_{2 n}\right) 1\right\rangle=\sum_{\left\{\sigma \in S_{2 n}: \sigma^{2}=1, \sigma(i) \neq i \forall i\right\}} \prod_{i<\sigma(i)} \frac{1}{\left(z_{i}-z_{\sigma(i)}\right)^{2}}
$$

[^0]4^{\star}. This Problem outlines a proof of Theorem 1 from Lecture 4 stating that for a nondegenerate \mathbb{Z}-graded Lie algebra \mathfrak{g} and any $n \geq 0$, the restriction
$$
(\cdot, \cdot)_{\lambda}: M_{\lambda}^{+}[-n] \times M_{-\lambda}^{-}[n] \longrightarrow \mathbb{C} \text { is nondegenerate for generic } \lambda \in \mathfrak{h}^{*}
$$

Identifying $M_{ \pm \lambda}^{ \pm}[\mp n] \simeq U\left(\mathfrak{n}_{\mp}\right)[\mp n]$ and choosing some fixed bases of the latter, this reduces to a non-vanishing of the corresponding determinant, denoted $\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}}$. The key idea will be to degenerate \mathfrak{g} to a "generalized Heisenberg algebra" where the proof is more feasible.
Step 1 (degeneration process): Consider the \mathbb{Z}-graded Lie algebra $\mathfrak{g}^{\epsilon}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}^{\epsilon}$ with $\mathfrak{g}_{n}^{\epsilon}=\mathfrak{g}_{n}$ as vector spaces, and with the Lie bracket defined via

$$
[x, y]_{\epsilon}=[x, y] \cdot \epsilon^{1+\delta_{n, 0}+\delta_{m, 0}-\delta_{n+m, 0}} \quad \text { for any } x \in \mathfrak{g}_{n}^{\epsilon}, y \in \mathfrak{g}_{m}^{\epsilon}
$$

For $\epsilon \neq 0$, show that the following linear map is a Lie algebra isomorphism

$$
\varphi_{\epsilon}: \mathfrak{g}^{\epsilon} \rightarrow \mathfrak{g} \quad \text { with } x \mapsto \epsilon^{1+\delta_{n, 0}} x \text { for } x \in \mathfrak{g}_{n}^{\epsilon}
$$

Show that

$$
\left(x v_{\lambda}^{+, \mathfrak{g}^{\epsilon}}, y v_{-\lambda}^{-, \mathfrak{g}^{\epsilon}}\right)_{\lambda}=\left(\varphi_{\epsilon}(x) v_{\lambda / \epsilon^{2}}^{+, \mathfrak{g}}, \varphi_{\epsilon}(y) v_{-\lambda / \epsilon^{2}}^{-, \mathfrak{g}}\right)_{\lambda / \epsilon^{2}}
$$

for any $x \in U\left(\mathfrak{n}_{-}\right), y \in U\left(\mathfrak{n}_{+}\right)$. Restricting to degree $\pm n$ components, deduce:

$$
\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}^{\epsilon}}=\epsilon^{N} \operatorname{det}(\cdot, \cdot)_{\lambda / \epsilon^{2}, n}^{\mathfrak{g}}
$$

for some $N \in \mathbb{Z}_{\geq 0}$.
Conclusion: Deduce that the leading term of $\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}}=\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}^{1}}$ equals $\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}^{0}}$.
Therefore, it suffices to prove the non-vanishing of $\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}^{0}}$ for generic $\lambda \in \mathfrak{h}^{*}$.
Step 2 (degenerated version explicitly): Note that $\mathfrak{g}^{0}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}$ as vector spaces with

$$
[x, y]_{\mathfrak{g}^{0}}= \begin{cases}{[x, y]} & \text { if } \operatorname{deg}(x)+\operatorname{deg}(y)=0 \\ 0 & \text { otherwise }\end{cases}
$$

for homogeneous elements x, y (hence, we call \mathfrak{g}^{0} a "generalized Heisenberg algebra"). Note that $\mathfrak{n}_{ \pm}=\bigoplus_{n>0} \mathfrak{g}_{ \pm n}^{0}$ are abelian, so that $U\left(\mathfrak{n}_{ \pm}\right) \simeq S\left(\mathfrak{n}_{ \pm}\right)$.
Verify that the \mathfrak{g}-invariant form $(\cdot, \cdot)_{\lambda}^{\mathfrak{g}^{0}}: S\left(\mathfrak{n}_{-}\right) \times S\left(\mathfrak{n}_{+}\right) \rightarrow \mathbb{C}$ is given by

$$
\begin{equation*}
\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{l}\right)=\delta_{k, l} \sum_{\sigma \in S(k)} \lambda\left(\left[a_{1}, b_{\sigma(1)}\right]\right) \cdots \lambda\left(\left[a_{k}, b_{\sigma(k)}\right]\right) \text { with } \lambda_{\mid \mathfrak{g}_{\neq 0}}=0 \tag{1}
\end{equation*}
$$

Step 3 (verification for \mathfrak{g}^{0}): Use formula (1) to show that $\operatorname{det}(\cdot, \cdot)_{\lambda, n}^{\mathfrak{g}^{0}} \neq 0$ for generic $\lambda \in \mathfrak{h}^{*}$.

[^0]: ${ }^{1}$ Note that this is the only splitting compatible with $\partial_{z} \in \operatorname{End} \mathcal{C}\left[\left[z, z^{-1}\right]\right]$.

