HOMEWORK 7 (DUE MARCH 18)

1. Recall the set $M(\infty)=\mathrm{Id}+\mathfrak{g l}_{\infty}$ and its subset $\mathrm{GL}(\infty) \subset M(\infty)$ consisting of invertible elements, introduced in Lecture 13.
(a) Show that the matrix multiplication makes $M(\infty)$ into a monoid and GL(∞) into a group.
(b) Verify that the formula

$$
A\left(v_{i_{0}} \wedge v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots\right)=\left(A v_{i_{0}}\right) \wedge\left(A v_{i_{1}}\right) \wedge\left(A v_{i_{2}}\right) \wedge \cdots
$$

defines an action of the monoid $M(\infty)$ and a group GL (∞) on $\mathcal{F}^{(m)}=\Lambda^{\frac{\infty}{2}, m} V$.
2. For $\tau \in \mathcal{F}^{(0)} \backslash\{0\}$, show that $\tau \in \Omega$ iff $S(\tau \otimes \tau)=0$ (proving Theorem 1 of Lecture 13).

Hint: Deduce this result from (or just apply similar arguments as in) its finite-dimensional counterpart established in Lecture 12.
3. Prove that $\tau=\tau\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ satisfies the first nontrivial equation of the KP hierarchy

$$
\left(\left(\partial_{z_{1}}^{4}+3 \partial_{z_{2}}^{2}-4 \partial_{z_{1}} \partial_{z_{3}}\right) \tau(x-z) \tau(x+z)\right)_{\left.\right|_{z=0}}=0
$$

if and only if the function

$$
u:=2 \partial_{x}^{2} \log \tau\left(x, y, t, c_{4}, c_{5}, \cdots\right)
$$

satisfies the KP equation

$$
\frac{3}{4} \partial_{y}^{2} u=\partial_{x}\left(\partial_{t} u-\frac{3}{2} u \cdot \partial_{x} u-\frac{1}{4} \partial_{x}^{3} u\right)
$$

4. Prove the formula of Lecture 14 for the coefficient of the leading power of h in $\operatorname{det}_{m}(c, h)$:

$$
K_{m}=\prod_{r, s \geq 1}^{r s \leq m}\left((2 r)^{s} \cdot s!\right)^{m(r, s)}
$$

with

$$
m(r, s)=p(m-r s)-p(m-r(s+1))
$$

where $p(n)$ is the partition function.

