HOMEWORK 9 (DUE APRIL 1)

1. Let \mathfrak{g} be a simple Lie algebra with an invariant non-degenerate pairing (\cdot, \cdot) . Prove that the Casimir element (with respect to (\cdot, \cdot)) acts on the Verma \mathfrak{g} -module M_{λ} as $(\lambda, \lambda + 2\rho) \mathrm{Id}_{M_{\lambda}}$.

2. Does any highest weight $\hat{\mathfrak{g}}$ -module admit a $\tilde{\mathfrak{g}}$ -action extending that of $\hat{\mathfrak{g}}$? Note: For non-critical levels, this was discussed in Lecture 17.

3. Verify that if an admissible $\hat{\mathfrak{g}}$ -module M of non-critical level is unitary as a $\hat{\mathfrak{g}}$ -module, then it is also unitary as a Vir $\ltimes \hat{\mathfrak{g}}$ -module (via the Sugawara construction).

Note: This proves Proposition 2 of Lecture 17.

4. Let $\hat{\mathfrak{g}}$ be the affine Lie algebra associated to a simple Lie algebra \mathfrak{g} . For any $a \in \mathfrak{g}$, we set:

$$a[n] := at^n \in \widehat{\mathfrak{g}}$$
 and $a(z) := \sum_{n \in \mathbb{Z}} a[n] z^{-n-1}$

(a) For a highest weight ĝ-representation V, show that a(z) defines a linear map V → V((z)).
(b) Let V have a highest weight vector v with hv = 0 for h in the Cartan subalgebra of g and Kv = kv (k ∈ C). Evaluate ⟨v, a(z₁)b(z₂)v⟩ (as a rational function).
(c) In the setup of (b), evaluate ⟨v, a(z₁)b(z₂)c(z₃)v⟩.