HOMEWORK 11 (DUE APRIL 15)

1. Recall the notations $F = Q \otimes_{\mathbb{Z}} \mathbb{C}$, $P = \mathfrak{h}^* \oplus F$, the isomorphism $\varphi \colon P \xrightarrow{\sim} \mathfrak{h}_{ext}^*$, and the symmetric invariant pairing $(\cdot, \cdot) \colon \mathfrak{g}(A) \times \mathfrak{g}(A) \to \mathbb{C}$ from Lecture 21.

(a) Show that the kernel of the pairing (\cdot, \cdot) coincides with the center Z of $\mathfrak{g}(A)$.

Define a linear map $\gamma \colon F \to \mathfrak{h}$ via $\alpha_i \mapsto h_{\alpha_i} \coloneqq d_i^{-1}h_i$, and set:

$$h_{\alpha} := \gamma(\alpha)$$
 for all $\alpha \in F$.

- (b) Verify $(h_{\alpha}, h) = \bar{\alpha}(h)$ for all $\alpha \in F, h \in \mathfrak{h}$.
- (c) Verify $[x, y] = (x, y) \cdot h_{\alpha}$ for all $\alpha \in \Delta, x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{-\alpha}$.
- (d) Deduce from (a, c) that $\mathfrak{g}(A)$ (with the principal \mathbb{Z} -grading) is non-degenerate \mathbb{Z} -graded.

Consider the inner product $\langle \cdot, \cdot \rangle \colon P \times P \to \mathbb{C}$ defined by:

$$\langle \varphi + \alpha, \psi + \beta \rangle = \varphi(h_{\beta}) + \psi(h_{\alpha}) + (h_{\alpha}, h_{\beta}).$$

- (e) Identifying $P \simeq \mathfrak{h}_{ext}^*$, show that the induced pairing $(\cdot, \cdot) \colon \mathfrak{h}_{ext} \times \mathfrak{h}_{ext} \to \mathbb{C}$ is given by $(h_{\alpha_i}, h_{\alpha_j}) = d_i^{-1} a_{ij}, \ (D_i, h_{\alpha_j}) = (h_{\alpha_j}, D_i) = \delta_{ij}, \ (D_i, D_j) = 0.$
- (f) Extend the invariant pairing on $\mathfrak{g}(A)$ to an invariant <u>non-degenerate</u> pairing on $\mathfrak{g}_{\text{ext}}(A)$.

Note: Thus, we obtain a non-degenerate pairing on the extended version of $\mathfrak{g}(A)$.

2. Let M_{λ}^+ (resp. M_{λ}^-) be the highest weight (resp. lowest weight) Verma module over a finite dimensional simple Lie algebra \mathfrak{g} . Let V be any \mathfrak{h} -diagonalizable module over \mathfrak{g} . Establish a vector space isomorphism:

$$\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}^{+} \otimes M_{\mu}^{-}, V) \simeq V[\lambda + \mu].$$

3. Let \mathfrak{g} be a simple Lie algebra with the generators $\{e_i, f_i, h_i\}_{i=1}^r$. Set:

$$x[n] := x \cdot t^n \in L\mathfrak{g} \quad \text{for} \quad x \in \mathfrak{g}.$$

Find the defining relations between the elements $\left\{e_i[n], f_i[n], h_i[n]\right\}_{1 \le i \le r}^{n \in \mathbb{Z}}$ generating $L\mathfrak{g}$.

Note: This provides an explicit "loop" realization of $L\mathfrak{g}$ by generators and relations.