HOMEWORK 13 (DUE APRIL 29)

1. (a) Show that the action $L G \curvearrowright L \mathfrak{g}$ can be uniquely extended to the action $L G \curvearrowright L \mathfrak{g} \oplus \mathbb{C} d$ (with respect to the Lie algebra embedding $L \mathfrak{g} \hookrightarrow L \mathfrak{g} \oplus \mathbb{C} d$). Verify that:

$$
L G \ni g(t): d \mapsto d-t g^{\prime}(t) g(t)^{-1} \in L \mathfrak{g} \oplus \mathbb{C} d .
$$

(b) Show that there is a unique lift of the action in (a) to the action $L G \curvearrowright \tilde{\mathfrak{g}}=L \mathfrak{g} \oplus \mathbb{C} d \oplus \mathbb{C} K$ (with respect to the Lie algebra epimorphism $\widetilde{\mathfrak{g}} \rightarrow L \mathfrak{g} \oplus \mathbb{C} d$ with $K \mapsto 0$) which preserves the non-degenerate pairing on $\widetilde{\mathfrak{g}}$. Verify that this action is explicitly given by:

$$
\begin{aligned}
& g(t): K \mapsto K, \\
& g(t): a(t) \mapsto g(t) a(t) g(t)^{-1}+\operatorname{Res}_{t=0}\left(g^{\prime}(t) a(t) g(t)^{-1}\right) d t \cdot K, \quad \text { for } a(t) \in L \mathfrak{g}, \\
& g(t): d \mapsto d-t g^{\prime}(t) g(t)^{-1}-\frac{1}{2} \operatorname{Res}_{t=0}\left(t g^{\prime}(t) g(t)^{-1}, t g^{\prime}(t) g(t)^{-1}\right) \frac{d t}{t} \cdot K .
\end{aligned}
$$

(c) Deduce the explicit formulas for the action of t_{k}, r_{α} in the Weyl group of affine $\mathfrak{s l}_{2}$ from Lecture 24:

$$
\begin{aligned}
& r_{\alpha}: \alpha \mapsto-\alpha, \quad K \mapsto K, \quad d \mapsto d, \\
& t_{k}: \alpha \mapsto \alpha+2 k \cdot K, \quad K \mapsto K, \quad d \mapsto d-k \cdot \alpha-k^{2} \cdot K .
\end{aligned}
$$

2. Derive the Weyl-Kac denominator formula in the case of affine $\mathfrak{s l}_{2}$ from the Jacobi triple product identity.
3. Let $\Theta_{n, m}(\tau, z):=\Theta_{n, m}(\tau, z, 0)$ with τ in the upper half of the complex plane.
(a) Show that for a fixed τ, this is a holomorphic function in z.
(b) Relate $\Theta_{n, m}$ with $\Theta_{0,1}$.
(c) Find the zeros of $\Theta_{n, m}$ and their multiplicities.

Hint: Use the Jacobi triple product identity to factorize $\Theta_{0,1}$.
The following problem is quite technical, but we'll need it in Lecture 25.
4*. (a) Prove the following product formula for theta functions $\Theta_{n, m}=\Theta_{n, m}(\tau, z, u)$:

$$
\begin{aligned}
& \Theta_{n, m} \cdot \Theta_{n^{\prime}, m^{\prime}}=\sum_{j \in \mathbb{Z}} \sum_{\bmod \left(m+m^{\prime}\right) \mathbb{Z}} d_{j}^{\left(m, m^{\prime}, n, n^{\prime}\right)} \Theta_{n+n^{\prime}+2 m j, m+m^{\prime}} \\
& d_{j}^{\left(m, m^{\prime}, n, n^{\prime}\right)}:=\sum_{k \in \frac{m^{\prime} n-m n^{\prime}+2 j m m^{\prime}}{2 m m^{\prime}\left(m+m^{\prime}\right)}+\mathbb{Z}} q^{m m^{\prime}\left(m+m^{\prime}\right) k^{2}} .
\end{aligned}
$$

(b) Let $\lambda=m d+\frac{n}{2} \alpha \in P_{+}, m \geq n \geq 0$. Use part (a) to prove:

$$
\begin{aligned}
& \operatorname{ch}_{L_{d}}(h) \operatorname{ch}_{L_{\lambda}}(h)=\sum_{k \in I} \psi_{m, n, k}(q) \operatorname{ch}_{L_{d+\lambda-k \alpha}}(h) \\
& I:=\left\{k \in \mathbb{Z} \left\lvert\,-\frac{m-n+1}{2} \leq k \leq \frac{n}{2}\right.\right\} \\
& \psi_{m, n, k}(q):=\frac{f_{k}^{(m, n)}(q)-f_{n+1-k}^{(m, n)}(q)}{\varphi(q)} \\
& f_{k}^{(m, n)}(q):=\sum_{j \in \mathbb{Z}} q^{(m+2)(m+3) j^{2}+((n+1)+2 k(m+2)) j+k^{2}} .
\end{aligned}
$$

(c) For m, n, k as in part (b), define $r:=n+1, s:=n+1-2 k$ for $k \geq 0$ and $r:=m-n+1, s:=$ $m-n+2+2 k$ for $k<0$. Prove:

$$
\begin{aligned}
& \varphi(q) \cdot q^{-k^{2}} \cdot \psi_{m, n, k}(q)=A+B+C, \text { where } \\
& A:=1-q^{r s}-q^{(m+2-r)(m+3-s)}, \\
& B:=\sum_{j>0} q^{(m+2)(m+3) j^{2}+((m+3) r-(m+2) s) j}\left(1-q^{2(m+2) s j+r s}\right), \\
& C:=\sum_{j>0} q^{(m+2)(m+3) j^{2}-((m+3) r-(m+2) s) j}\left(1-q^{2(m+2)(m+3-s) j+(m+2-r)(m+3-s)}\right) .
\end{aligned}
$$

(d) Use part (c) to provide an algebraic proof of the fact $\psi_{m, n, k}(q) \in \mathbb{Z}_{\geq 0}\left[q, q^{-1}\right]$.

