HOMEWORK 14

1. Complete the proof of the main Theorem from Lecture 26 by proving the following results:
(a) Show that the leading term of $\operatorname{det}\left(\langle\cdot, \cdot\rangle^{\eta}\right)$ equals $\prod_{\alpha>0} \prod_{n \geq 1} h_{\alpha}^{P(\eta-n \alpha)}$, up to a nonzero constant factor.
(b) Let V be a finite dimensional space and $\left\{H_{s}\right\}_{s \in S}$ be a countable union of hyperplanes in V defined by linear functions $f_{s} \in \mathbb{C}[V]$. Let $F \in \mathbb{C}[V]$ be such that the zero set $Z(F) \subset V$ is contained in the union $\bigcup_{s \in S} H_{s}$. Show that F is a product of some linear functions f_{s} (possibly with multiplicities), up to a nonzero constant factor.
(c) For $\alpha \in \Delta$ with $(\alpha, \alpha) \neq 0$, establish the linear independence of the functions $\left\{\phi_{\beta}(\cdot)\right\}_{\beta \in \mathbb{Q} \alpha \cap Q^{+}}$ defined via $\phi_{\beta}(\eta):=P(\eta-\beta)$ for $\eta \in Q^{+}$.

2. Vertex Operator Construction for $\widehat{\mathfrak{s l}}_{2}$

Let a_{i} be the standard generators of the Heisenberg algebra \mathcal{A}. Let F_{μ} be the Fock representation over \mathcal{A}, and set $F:=\bigoplus_{m \in \mathbb{Z}} F_{\sqrt{2} m}$. Define vertex operators on F :

$$
X_{ \pm}(u):=\exp \left(\mp \sqrt{2} \sum_{n<0} \frac{a_{n}}{n} u^{-n}\right) \exp \left(\mp \sqrt{2} \sum_{n>0} \frac{a_{n}}{n} u^{-n}\right) S^{ \pm 1} u^{ \pm \sqrt{2} a_{0}}
$$

where S is the operator of shift $m \rightarrow m+1\left(\operatorname{cf.} \Gamma(u), \Gamma^{*}(u)\right.$ of Lecture 11).
(a) Show that

$$
X_{a}(u) X_{b}(v)=(u-v)^{2 a b}: X_{a}(u) X_{b}(v): \text { for any } a, b \in\{ \pm\}
$$

(by abuse of notations, we identify \pm with ± 1 above). In particular,

$$
X_{a}(u) X_{b}(v)=X_{b}(v) X_{a}(u)
$$

in the sense that the matrix elements of both sides are series in u, v which converge (but in different regions!) to the same rational functions (note that in the case of $\Gamma(u), \Gamma^{*}(u)$, there was a minus sign; thus, while $\Gamma(u), \Gamma^{*}(u)$ are "fermions", $X_{+}(u), X_{-}(u)$ are "bosons"!).
(b) Calculate $\left\langle 1, X_{+}\left(u_{1}\right) \cdots X_{+}\left(u_{n}\right) X_{-}\left(v_{1}\right) \cdots X_{-}\left(v_{n}\right) 1\right\rangle$ for a highest weight vector $1 \in F_{0}$.
(c) Find the commutation relation between $X_{ \pm}(u)$ and a_{n}.
(d) Show that the assignment

$$
e(u)=\sum_{n \in \mathbb{Z}} e[n] u^{-n-1} \mapsto X_{+}(u), f(u)=\sum_{n \in \mathbb{Z}} f[n] u^{-n-1} \mapsto X_{-}(u), h[n] \mapsto \sqrt{2} a_{n}, K \mapsto \operatorname{Id}_{F}
$$

defines an action of the affine Kac-Moody algebra $\widehat{\mathfrak{s l}}_{2}$ on F. Show that this is a level one highest weight representation of $\widehat{\mathfrak{s l}}_{2}$ with the highest weight 0 with respect to $\mathfrak{s l}_{2}$.
(e) Show that F is an irreducible $\widehat{\mathfrak{s l}}_{2}$-representation. Compute its character, i.e. $\operatorname{Tr}_{F}\left(e^{z h} q^{\text {d }}\right)$, where h is the generator of $\mathfrak{s l}_{2}$ and \mathbf{d} is the degree operator defined by the conditions $\mathbf{d}(1)=0$ and $[\mathrm{d}, x[n]]=n x[n]$ for any $x \in \mathfrak{s l}_{2}, n \in \mathbb{Z}$.
3. Use the explicit realization of the fundamental representation $L_{d}=L_{\omega_{0}}$ of Problem 2 to get a direct proof of the character formula (see Lecture 25):

$$
\operatorname{ch}_{L_{d}}(h)=\frac{\Theta_{0,1}(\tau, z, u)}{\varphi(q)} \quad \text { for } \quad h=2 \pi i\left(\frac{z}{2} \alpha-\tau d+u K\right) .
$$

