WORKSHEET 1: 12.1-12.3 VECTORS AND DOT PRODUCT

1. (a) What does the graph of $y=x^{2}$ look like in \mathbb{R}^{2} ?
(b) What does the graph of $y=x^{2}$ look like in \mathbb{R}^{3} ? Give a description and a picture.
(c) What does the graph of $x^{2}+y^{2}=4$ look like in \mathbb{R}^{3} ? Give a description and a picture.
2. Given three points $P(1,2), Q(2,1), R(3,4)$, determine if the triangle $\triangle P Q R$ is either a right triangle and/or an isosceles triangle.
3. Write down an equation of the sphere of radius 2 with a center at $A(1,0,-2)$.
4. The equation $x^{2}+6 x+y^{2}-2 y+z^{2}-4 z=2$ determines a sphere in \mathbb{R}^{3}. Find its center and radius.
5. Find the vector represented by by the directed line segment with initial point $A(1,0,2)$ and terminal point $B(-1,3,4)$.
6. If $\vec{v}=\langle 2,-1,1\rangle, \vec{w}=\langle-1,0,2\rangle$, find:
(a) $|\vec{v}|$.
(b) $\vec{v}-3 \vec{w}$.
7. If $\vec{v}=\langle 1,2\rangle, \vec{w}=\langle 3,1\rangle$, sketch the vectors $\vec{v}+\vec{w}$ and $\vec{v}-\vec{w}$.
8. Find a vector of length 1 in the direction opposite to $\langle 3,-4\rangle$. Express the answer in terms of the standard vectors \vec{i}, \vec{j}.
9. Compute the dot-product $\langle 1,-1,0\rangle \cdot\langle 7,4,100\rangle$.
10. Are the vectors $\langle 1,-2,1\rangle$ and $\langle 2,3,1\rangle$ orthogonal? If not, determine if the angle between the vectors is obtuse or acute. Determine the angle explicitly.
