WORKSHEET 1: 12.1-12.3 VECTORS AND DOT PRODUCT

(a) What does the graph of y = x² look like in R²?
(b) What does the graph of y = x² look like in R³? Give a description and a picture.
(c) What does the graph of x² + y² = 4 look like in R³? Give a description and a picture.

2. Given three points P(1,2), Q(2,1), R(3,4), determine if the triangle ΔPQR is either a right triangle and/or an isosceles triangle.

3. Write down an equation of the sphere of radius 2 with a center at A(1, 0, -2).

4. The equation $x^2 + 6x + y^2 - 2y + z^2 - 4z = 2$ determines a sphere in \mathbb{R}^3 . Find its center and radius.

5. Find the vector represented by by the directed line segment with initial point A(1,0,2)and terminal point B(-1, 3, 4).

6. If
$$\overrightarrow{v} = \langle 2, -1, 1 \rangle$$
, $\overrightarrow{w} = \langle -1, 0, 2 \rangle$, find:
(a) $|\overrightarrow{v}|$.
(b) $\overrightarrow{v} - 3\overrightarrow{w}$.

7. If $\overrightarrow{v} = \langle 1, 2 \rangle$, $\overrightarrow{w} = \langle 3, 1 \rangle$, sketch the vectors $\overrightarrow{v} + \overrightarrow{w}$ and $\overrightarrow{v} - \overrightarrow{w}$.

8. Find a vector of length 1 in the direction opposite to $\langle 3, -4 \rangle$. Express the answer in terms of the standard vectors $\overrightarrow{i}, \overrightarrow{j}$.

9. Compute the dot-product $\langle 1, -1, 0 \rangle \cdot \langle 7, 4, 100 \rangle$.

10. Are the vectors (1, -2, 1) and (2, 3, 1) orthogonal? If not, determine if the angle between the vectors is obtuse or acute. Determine the angle explicitly.