HOMEWORK 3

1. (a) Show that for a finite quiver Q, the path algebra P_{Q} is generated by $\left\{p_{i}\right\}_{i \in I} \cup\left\{a_{h}\right\}_{h \in E}$ with the following defining relations:
$\circ \sum_{i \in I} p_{i}=1$,

- $p_{i} p_{j}=\delta_{i j} p_{i}$,
- $a_{h} p_{h^{\prime}}=a_{h}, a_{h} p_{j}=0$ if $j \neq h^{\prime}$,
- $p_{h^{\prime \prime}} a_{h}=a_{h}, p_{j} a_{h}=0$ if $j \neq h^{\prime \prime}$,
where $h^{\prime}, h^{\prime \prime}$ denote the "outcoming" and "incoming" vertices of the edge $h \in E$ (as in the class).
(b) Verify that the constructions from the class establish bijections between isomorphism classes of representations of the path algebra P_{Q} and of the quiver Q.
(c) Justify what the notions of "irreducible" and "indecomposable" representations of Q should mean, so that they exactly correspond to the "irreducible" and "indecomposable" representations of the path algebra P_{Q}.

2. Let $A=\operatorname{Mat}_{d}(k)$. Prove the following two results we used in the class:
(a) $A \simeq A^{\mathrm{op}}$ as algebras.
(b) $A \simeq A^{*}$ as A-representations.
3. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n algebras with units $1_{1}, 1_{2}, \ldots, 1_{n}$, respectively. Let $A=A_{1} \oplus A_{2} \oplus$ $\cdots \oplus A_{n}$. Clearly $1_{i} 1_{j}=\delta_{i j} 1_{i}$ and $1=1_{1}+1_{2}+\ldots+1_{n}$ is the unit of A.
(a) For every representation of V of A, verify that $1_{i} V$ is a representation of A_{i}. Vice-verse, if V_{1}, \ldots, V_{n} are representations of A_{1}, \ldots, A_{n}, verify that $V_{1} \oplus \cdots \oplus V_{n}$ becomes naturally an A-representation.
(b) Show that a representation V of A is irreducible if and only if $1_{i} V$ is an irreducible nonzero representation of A_{i} for exactly one $1 \leq i \leq n$ and $1_{j} V=0$ for $j \neq i$. Deduce the classification of irreducible A-representations in terms of those of A_{i}.
(c) Verify in a direct way that the only irreducible representation of $\operatorname{Mat}_{d}(k)$ is k^{d} and that every finite dimensional representation of $\operatorname{Mat}_{d}(k)$ is a direct sum of copies of k^{d}.
(d) Deduce an alternative proof of the classification result of finite dimensional representations of the algebra $\bigoplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(k)$ we had in the class.
4. Given an algebra A and two representations V, W of A, we would like to classify all representations U of A such that V is a subrepresentation of U and $U / V \simeq W$.

Suppose we have a representation U as above. As a vector space it can be (nonuniquely) identified with $V \oplus W$, so that for any $a \in A$ the corresponding operator $\rho_{U}(a)$ has a block
triangular form

$$
\rho_{U}(a)=\left[\begin{array}{cc}
\rho_{V}(a) & f(a) \\
0 & \rho_{W}(a)
\end{array}\right]
$$

where $f: A \rightarrow \operatorname{Hom}_{k}(W, V)$ is a linear map.
(a) What is the necessary and sufficient condition on $f(a)$ under which $\rho_{U}(a)$ is a representation? Maps f satisfying this condition are called 1-cocycles. They form a vector space denoted by $Z^{1}(W, V)$.
(b) Let $X: W \rightarrow V$ be a linear map. The coboundary of X, denoted $d X$, is defined to be the function $A \rightarrow \operatorname{Hom}_{k}(W, V)$ given by $d X(a)=\rho_{V}(a) X-X \rho_{W}(a)$. Show that $d X$ is a cocycle which vanishes if and only if X is a homomorphism of representations. Thus, coboundaries form a subspace $B^{1}(W, V) \subset Z^{1}(W, V)$, which is isomorphic to $\operatorname{Hom}_{k}(W, V) / \operatorname{Hom}_{A}(W, V)$. The quotient $Z^{1}(W, V) / B^{1}(W, V)$ is denoted by $\operatorname{Ext}^{1}(W, V)$.
(c) Show that if $f, f^{\prime} \in Z^{1}(W, V)$ and $f-f^{\prime} \in B^{1}(W, V)$, then the corresponding extensions U, U^{\prime} are isomorphic representations of A. Conversely, if $\phi: U \rightarrow U^{\prime}$ is an isomorphism such that

$$
\phi=\left[\begin{array}{cc}
1_{V} & \star \\
0 & 1_{W}
\end{array}\right]
$$

then $f-f^{\prime} \in B^{1}(W, V)$. Thus the space $\operatorname{Ext}^{1}(W, V)$ "classifies" extensions of W by V.
(d) Assume that W, V are finite-dimensional irreducible representations of A. For any $f \in$ Ext ${ }^{1}(W, V)$, let U_{f} be the corresponding extension. Show that U_{f} is isomorphic to $U_{f^{\prime}}$ as representations if and only if f and f^{\prime} are proportional. Thus, isomorphism classes (as representations) of nontrivial extensions of W by V (i.e. those not isomorphic to $W \oplus V$) are parametrized by the projective space $\mathbb{P E x t}^{1}(W, V)$. In particular, any extension is trivial if and only if $\operatorname{Ext}^{1}(W, V)=0$.
5. (a) Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and V_{a}, V_{b} be the 1-dimensional A-representations in which the elements x_{i} act by $a_{i}, b_{i}\left(a_{i}, b_{i} \in \mathbb{C}\right)$, respectively. Find $\operatorname{Ext}^{1}\left(V_{a}, V_{b}\right)$. Classify all 2dimensional A-representations.
(b) Let B be the algebra over \mathbb{C} generated by x_{1}, \ldots, x_{n} with the defining relations $x_{i} x_{j}=0$ for all i, j. Show that for $n>1$ the algebra B has infinitely many nonisomorphic indecomposable representations.
(c) Let Q be a quiver without oriented cycles, and let P_{Q} be the path algebra of Q. Find irreducible representations of P_{Q} and compute Ext ${ }^{1}$ between them. Classify all 2-dimensional representations of P_{Q}.

