HOMEWORK 4

1. (a) Given three \mathbf{k}-vector spaces V, W, U, construct a natural bijection between \mathbf{k}-bilinear maps $V \times W \rightarrow U$ and k-linear maps $V \otimes W \rightarrow U$.
(b) Prove that if $\left\{v_{i}\right\}$ is a basis of $V,\left\{w_{j}\right\}$ is a basis of W, then $\left\{v_{i} \otimes w_{j}\right\}$ is a basis of $V \otimes W$.
(c) Construct a natural isomorphism $V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ in case V is finite dimensional.
(d) Let V be a \mathbf{k}-vector space. Define the n-th symmetric power of V, denoted by $S^{n} V$, to be the quotient of $V^{\otimes n}$ by the subspace spanned by $T-s(T)$ where $T \in V^{\otimes n}$ and s is a transposition between two copies of V in $V^{\otimes n}=V \otimes V \otimes \cdots \otimes V$. Likewise, define the n-th exterior power of V, denoted by $\Lambda^{n} V$, to be the quotient of $V^{\otimes n}$ by the subspace spanned by T such that $T=s(T)$ for some transposition s.

If $\left\{v_{i}\right\}$ is a basis of V, construct bases of $S^{n} V$ and $\Lambda^{n} V$.
If $\operatorname{dim}(V)=m$, find $\operatorname{dim}\left(S^{n} V\right)$ and $\operatorname{dim}\left(\Lambda^{n} V\right)$.
(e) Assuming $\operatorname{char}(\mathbf{k})=0$, find a natural identification between $S^{n} V$ and the subspace $\left\{T \in V^{\otimes n} \mid T=s(T)\right.$ for all $\left.s\right\}$, find a natural identification between $\Lambda^{n} V$ and the subspace $\left\{T \in V^{\otimes n} \mid T=-s(T)\right.$ for all $\left.s\right\}$.
(f) Let $A: V \rightarrow W$ be a k-linear map. Construct natural k-linear maps $A^{\otimes n}: V^{\otimes n} \rightarrow$ $W^{\otimes n}, S^{n} A: S^{n} V \rightarrow S^{n} W, \Lambda^{n} A: \Lambda^{n} V \rightarrow \Lambda^{n} W$.
(g) In the setup of (f), assume that $V=W$ and that A has eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. Find $\operatorname{Tr}\left(S^{n} A\right), \operatorname{Tr}\left(\Lambda^{n} A\right)$. Show that $\Lambda^{m} A=\operatorname{det}(A)$ Id. Deduce $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(h) Define the tensor algebra of V, denoted by $T V$, to be $T V=\bigoplus_{n \geq 0} V^{\otimes n}$ with multiplication defined by $a \cdot b=a \otimes b$ for $a \in V^{\otimes r}, b \in V^{\otimes s}$. Verify that if $\operatorname{dim}(V)=m$, then $T V$ is isomorphic to a free algebra in m generators.
(i) Define the symmetric algebra of V, denoted by $S V$, to be the quotient of $T V$ by the ideal generated by $\{v \otimes w-w \otimes v \mid v, w \in V\}$. Verify that if $\operatorname{dim}(V)=m$, then $S V$ is isomorphic to a polynomial algebra in m generators. Show that $S V=\bigoplus_{n \geq 0} S^{n} V$.
(j) Define the exterior algebra of V, denoted by ΛV, to be the quotient of $T V$ by the ideal generated by $\{v \otimes v \mid v \in V\}$. Verify that if $\operatorname{dim}(V)=m$, then ΛV is isomorphic to the exterior algebra in m generators. Show that $\Lambda V=\bigoplus_{n \geq 0} \Lambda^{n} V$.
2. Let V and W be \mathbf{k}-vector spaces of dimensions m and n, respectively. Construct a natural algebra isomorphism $\operatorname{End}(V) \otimes \operatorname{End}(W) \rightarrow \operatorname{End}(V \otimes W)$. Note that choosing bases of V and W, this gives rise to an algebra isomorphism $\operatorname{Mat}_{m \times m}(\mathbf{k}) \otimes_{\mathbf{k}} \operatorname{Mat}_{n \times n}(\mathbf{k}) \rightarrow \operatorname{Mat}_{m n \times m n}(\mathbf{k})$. Verify that under this identification, the irreducible representation $\mathbf{k}^{m n}$ of $\operatorname{Mat}_{m n \times m n}(\mathbf{k})$ is isomorphic to the tensor product of irreducible representations \mathbf{k}^{m} and \mathbf{k}^{n} of $\operatorname{Mat}_{m \times m}(\mathbf{k})$ and $\operatorname{Mat}_{n \times n}(\mathbf{k})$, respectively.
3. (a) Let \mathbf{k} be a field and K be an extension of \mathbf{k}. If A is an algebra over \mathbf{k} show that $A \otimes_{\mathbf{k}} K$ is naturally an algebra over K. Likewise, if V is an A-module, then $V \otimes_{\mathbf{k}} K$ has a natural structure of a module over $A \otimes_{\mathbf{k}} K$.
(b) Show that if M, N are modules over a commutative algebra A, then $M \otimes_{A} N$ has a natural structure of an A-module.
4. Let A be the algebra of real-valued continuous functions on \mathbb{R} which are periodic with period 1, i.e. $f(x+1)=f(x)$. Let M be the A-module of continuous functions f on \mathbb{R} which are antiperiodic with period 1, i.e., $f(x+1)=-f(x)$.
(a) Show that A and M are indecomposable A-modules.
(b) Show that A is not isomorphic to M, but $A \oplus A$ is isomorphic to $M \oplus M$ as A-modules. Therefore, Krull-Schmidt theorem fails for infinite dimensional modules.

