HOMEWORK 4

1. (a) Given three **k**-vector spaces V, W, U, construct a natural bijection between **k**-bilinear maps $V \times W \to U$ and k-linear maps $V \otimes W \to U$.

(b) Prove that if $\{v_i\}$ is a basis of V, $\{w_i\}$ is a basis of W, then $\{v_i \otimes w_i\}$ is a basis of $V \otimes W$.

(c) Construct a natural isomorphism $V^* \otimes W \to \operatorname{Hom}(V, W)$ in case V is finite dimensional.

(d) Let V be a k-vector space. Define the *n*-th symmetric power of V, denoted by $S^n V$, to be the quotient of $V^{\otimes n}$ by the subspace spanned by T - s(T) where $T \in V^{\otimes n}$ and s is a transposition between two copies of V in $V^{\otimes n} = V \otimes V \otimes \cdots \otimes V$. Likewise, define the *n*-th **exterior power of** V, denoted by $\Lambda^n V$, to be the quotient of $V^{\otimes n}$ by the subspace spanned by T such that T = s(T) for some transposition s.

If $\{v_i\}$ is a basis of V, construct bases of $S^n V$ and $\Lambda^n V$. If $\dim(V) = m$, find $\dim(S^n V)$ and $\dim(\Lambda^n V)$.

(e) Assuming char(\mathbf{k}) = 0, find a natural identification between $S^n V$ and the subspace $\{T \in V^{\otimes n} | T = s(T) \text{ for all } s\}$, find a natural identification between $\Lambda^n V$ and the subspace $\{T \in V^{\otimes n} | T = -s(T) \text{ for all } s\}.$

(f) Let $A: V \to W$ be a **k**-linear map. Construct natural **k**-linear maps $A^{\otimes n}: V^{\otimes n} \to W^{\otimes n}$, $S^n A: S^n V \to S^n W$, $\Lambda^n A: \Lambda^n V \to \Lambda^n W$.

(g) In the setup of (f), assume that V = W and that A has eigenvalues $\{\lambda_1, \ldots, \lambda_m\}$. Find $\operatorname{Tr}(S^n A), \operatorname{Tr}(\Lambda^n A)$. Show that $\Lambda^m A = \det(A)$ Id. Deduce $\det(AB) = \det(A)\det(B)$.

(h) Define the **tensor algebra of** V, denoted by TV, to be $TV = \bigoplus_{n \ge 0} V^{\otimes n}$ with multiplication defined by $a \cdot b = a \otimes b$ for $a \in V^{\otimes r}, b \in V^{\otimes s}$. Verify that if $\dim(V) = m$, then TV is isomorphic to a free algebra in m generators.

(i) Define the symmetric algebra of V, denoted by SV, to be the quotient of TV by the ideal generated by $\{v \otimes w - w \otimes v | v, w \in V\}$. Verify that if dim(V) = m, then SV is isomorphic to a polynomial algebra in m generators. Show that $SV = \bigoplus_{n>0} S^n V$.

(j) Define the **exterior algebra of** V, denoted by ΛV , to be the quotient of TV by the ideal generated by $\{v \otimes v | v \in V\}$. Verify that if $\dim(V) = m$, then ΛV is isomorphic to the exterior algebra in m generators. Show that $\Lambda V = \bigoplus_{n>0} \Lambda^n V$.

2. Let V and W be k-vector spaces of dimensions m and n, respectively. Construct a natural algebra isomorphism $\operatorname{End}(V) \otimes \operatorname{End}(W) \to \operatorname{End}(V \otimes W)$. Note that choosing bases of V and W, this gives rise to an algebra isomorphism $\operatorname{Mat}_{m \times m}(\mathbf{k}) \otimes_{\mathbf{k}} \operatorname{Mat}_{n \times n}(\mathbf{k}) \to \operatorname{Mat}_{mn \times mn}(\mathbf{k})$. Verify that under this identification, the irreducible representation \mathbf{k}^{mn} of $\operatorname{Mat}_{mn \times mn}(\mathbf{k})$ is isomorphic to the tensor product of irreducible representations \mathbf{k}^m and \mathbf{k}^n of $\operatorname{Mat}_{m \times m}(\mathbf{k})$ and $Mat_{n \times n}(\mathbf{k})$, respectively.

HOMEWORK 4

3. (a) Let **k** be a field and K be an extension of **k**. If A is an algebra over **k** show that $A \otimes_{\mathbf{k}} K$ is naturally an algebra over K. Likewise, if V is an A-module, then $V \otimes_{\mathbf{k}} K$ has a natural structure of a module over $A \otimes_{\mathbf{k}} K$.

(b) Show that if M, N are modules over a commutative algebra A, then $M \otimes_A N$ has a natural structure of an A-module.

4. Let A be the algebra of real-valued continuous functions on \mathbb{R} which are periodic with period 1, i.e. f(x+1) = f(x). Let M be the A-module of continuous functions f on \mathbb{R} which are antiperiodic with period 1, i.e., f(x+1) = -f(x).

(a) Show that A and M are indecomposable A-modules.

(b) Show that A is not isomorphic to M, but $A \oplus A$ is isomorphic to $M \oplus M$ as A-modules. Therefore, Krull-Schmidt theorem fails for infinite dimensional modules.