HOMEWORK 5

1. Show that if the characteristic of the ground field \mathbf{k} divides the order of the group G, then the number of isomorphism classes of irreducible representations of G is strictly less than the number of conjugacy classes in G.

Hint: Consider the element $P = \sum_{g \in G} g \in \mathbf{k}[G]$. Verify $P^2 = 0$ and deduce $\operatorname{Tr}_V(P) = 0$ for every finite dimensional G-representation V.

2. Let G be a finite group. Let V_i be the irreducible complex representations of G. For every i, define

$$\psi_i := \frac{\dim(V_i)}{|G|} \sum_{q \in G} \chi_{V_i}(g) g^{-1} \in \mathbb{C}[G].$$

(a) Prove that ψ_i acts as the identity on V_i and as the null map on V_j $(j \neq i)$.

(b) Prove that $\psi_i^2 = \psi_i$ and $\psi_i \psi_j = 0$ for $i \neq j$.

3. Let V be a finite dimensional complex vector space, and let GL(V) be the group of invertible endomorphisms of V. Verify that $S^n V$ and $\Lambda^m V$ $(m \leq \dim(V))$ are representations of GL(V) in a natural way. Prove that they are irreducible.

4. Let G be the group of symmetries of a regular N-gon (it has 2N elements).

(a) Describe all irreducible complex representations of this group (consider separately the cases of even and odd N).

(b) Let V be the 2-dimensional complex representation of G obtained by complexification of the standard representation on the real plane (the plane of the polygon). Find the decomposition of $V \otimes V$ in a direct sum of irreducible representations.