HOMEWORK 6

1. Decompose a tensor product of any two irreducible representations of S_4 into irreducibles.

2. Let $K \subset H \subset G$ be three groups, W-a representation of K, V-a representation of G.

(a) Show that the K-representations $\operatorname{Res}_{K}^{H}(\operatorname{Res}_{H}^{G}(V))$ and $\operatorname{Res}_{K}^{G}(V)$ are naturally isomorphic.

(b) Show that the G-representations $\operatorname{Ind}_{H}^{G}(\operatorname{Ind}_{K}^{H}(W))$ and $\operatorname{Ind}_{K}^{G}(W)$ are naturally isomorphic.

(c) Use Frobenius reciprocity to show that (a) is equivalent to (b).

3. Let $H \subset G$ be a pair of finite groups, let $\chi \colon H \to \mathbb{C}^{\times}$ be a homomorphism, and let \mathbb{C}_{χ} denote the corresponding 1-dimensional representation of H. Set

$$e_{\chi} := \frac{1}{|H|} \sum_{g \in H} \chi(g)^{-1}g \in \mathbb{C}[H].$$

Verify that it is an idempotent. Prove that G-representations $\operatorname{Ind}_{H}^{G}(\mathbb{C}_{\chi})$ and $\mathbb{C}[G]e_{\chi}$ are naturally isomorphic (where G acts on the latter via left multiplication).

4. Consider S_3 as a subgroup of S_4 consisting of those permutations of the set $\{1, 2, 3, 4\}$ which fix 4. For every irreducible S_3 -representation W, decompose $\operatorname{Ind}_{S_2}^{S_4}(W)$ into irreducibles.

5. During our proof of the fact that a dimension of any complex irreducible representation of a finite group G divides the order of G, we used the fact that any element of $\mathbb{Z}[G]$ satisfies a monic polynomial equation with integer coefficients. Prove this fact.

6. Let $\mathbf{k}[G]_1$ (respectively $\mathbf{k}[G]_2$) denote $\mathbf{k}[G]$ endowed with a natural ($\mathbf{k}[H], \mathbf{k}[G]$)-bimodule (respectively ($\mathbf{k}[G], \mathbf{k}[H]$)-bimodule) structure.

(a) Verify that $\operatorname{Res}_{H}^{G}(V)$, $\mathbf{k}[G]_{1} \otimes_{\mathbf{k}[G]} V$, and $\operatorname{Hom}_{\mathbf{k}[G]}(\mathbf{k}[G]_{2}, V)$ are naturally isomorphic.

(b) Verify that $\operatorname{Ind}_{H}^{G}(W)$, $\mathbf{k}[G]_{2} \otimes_{\mathbf{k}[H]} W$, and $\operatorname{Hom}_{\mathbf{k}[H]}(\mathbf{k}[G]_{1}, W)$ are naturally isomorphic.