HOMEWORK 7

1. Find the sum of dimensions of all irreducible representations of S_{n}.

Hint: Show that all of them are of real type and apply the Frobenius-Schur theorem.
2. For a Young diagram μ, let $A(\mu)$ be the set of Young diagrams obtained by adding a square to μ, and let $R(\mu)$ be the set of Young diagrams obtained by removing a square from μ.
(a) Prove $\operatorname{ReS}_{S_{n-1}}^{S_{n}} V_{\mu} \simeq \bigoplus_{\lambda \in R(\mu)} V_{\lambda}$.
(b) Prove $\operatorname{Ind}_{S_{n-1}}^{S_{n}} V_{\mu} \simeq \bigoplus_{\lambda \in A(\mu)} V_{\lambda}$.
3. The content $c(\lambda)$ of a Young diagram λ is the sum $\sum_{j} \sum_{i=1}^{\lambda_{j}}(i-j)$. Let

$$
C=\sum_{1 \leq i<j \leq n}(i j) \in \mathbb{C}\left[S_{n}\right]
$$

be the sum of all transpositions. Prove that C acts on the Specht module V_{λ} by multiplication by $c(\lambda)$.
4. Let V be any finite dimensional representation of S_{n}. Prove that the element

$$
E=(12)+(13)+\ldots+(1 n) \in \mathbb{C}\left[S_{n}\right]
$$

is diagonalizable and has integer eigenvalues on V which are between $1-n$ and $n-1$.

