HOMEWORK 9

1. Let V be the standard n-dimensional S_{n}-representation (as in Problem 3 of Homework 8). For any positive integer N and any Young diagram λ of size n, find the multiplicity of the Specht module V_{λ} in the S_{n}-module $\Lambda^{N} V$ (the N-th exterior power of V).
2. Let V be an N-dimensional vector space, λ-a Young diagram, and $L_{\lambda} V$-the corresponding $\mathrm{GL}(V)$-representation. Show that $L_{\lambda+1^{N}} \simeq L_{\lambda} \otimes \Lambda^{N} V$ as GL(V)-representations, where $1^{N}=(1, \ldots, 1) \in \mathbb{Z}^{N}$.
3. Let V be a 2-dimensional vector space and p, q be a pair of positive integers. Show that $S^{p}\left(S^{q}(V)\right) \simeq S^{q}\left(S^{p}(V)\right)$ as GL (V)-modules ($S^{n} W$ denotes the n-th symmetric power of W).
