HOMEWORK 9

1. Let V be the standard n-dimensional S_n -representation (as in Problem 3 of Homework 8). For any positive integer N and any Young diagram λ of size n, find the multiplicity of the Specht module V_{λ} in the S_n -module $\Lambda^N V$ (the N-th exterior power of V).

2. Let V be an N-dimensional vector space, λ -a Young diagram, and $L_{\lambda}V$ -the corresponding $\operatorname{GL}(V)$ -representation. Show that $L_{\lambda+1^N} \simeq L_{\lambda} \otimes \Lambda^N V$ as $\operatorname{GL}(V)$ -representations, where $1^N = (1, \ldots, 1) \in \mathbb{Z}^N$.

3. Let V be a 2-dimensional vector space and p, q be a pair of positive integers. Show that $S^p(S^q(V)) \simeq S^q(S^p(V))$ as GL(V)-modules $(S^n W$ denotes the *n*-th symmetric power of W).