HOMEWORK 11

1. In the construction of the complementary series for $G=\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$, we considered the representation $Y_{\nu}:=\operatorname{Ind}_{K}^{G} \mathbb{C}_{\nu}$, where $K=\left\{\left(\begin{array}{cc}x & \epsilon y \\ y & x\end{array}\right):(x, y) \neq(0,0)\right\} \subset G$ and \mathbb{C}_{ν} is a 1-dimensional K-representation determined by the homomorphism $\nu: K \rightarrow \mathbb{C}^{\times}$. Verify that the value of its character $\chi_{Y_{\nu}}$ on the elliptic element $g=\left(\begin{array}{cc}x & \epsilon y \\ y & x\end{array}\right)\left(x \in \mathbb{F}_{q}, y \in \mathbb{F}_{q}^{\times}\right)$equals

$$
\chi_{Y_{\nu}}\left(\begin{array}{cc}
x & \epsilon y \\
y & x
\end{array}\right)=\nu\left(\begin{array}{cc}
x & \epsilon y \\
y & x
\end{array}\right)+\nu^{q}\left(\begin{array}{cc}
x & \epsilon y \\
y & x
\end{array}\right) .
$$

2. By considering the action of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ on the projective line $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, verify isomorphisms

$$
\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right) \simeq S_{3}, \mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right) \simeq A_{4}, \mathrm{SL}_{2}\left(\mathbb{F}_{4}\right) \simeq A_{5},
$$

where A_{n} denotes the alternating group (a subgroup of S_{n} consisting of even permutations).

