HOMEWORK 11

1. In the construction of the complementary series for $G = \operatorname{GL}_2(\mathbb{F}_q)$, we considered the representation $Y_{\nu} := \operatorname{Ind}_K^G \mathbb{C}_{\nu}$, where $K = \left\{ \begin{pmatrix} x & \epsilon y \\ y & x \end{pmatrix} : (x, y) \neq (0, 0) \right\} \subset G$ and \mathbb{C}_{ν} is a 1-dimensional K-representation determined by the homomorphism $\nu : K \to \mathbb{C}^{\times}$. Verify that the value of its character $\chi_{Y_{\nu}}$ on the elliptic element $g = \begin{pmatrix} x & \epsilon y \\ y & x \end{pmatrix}$ $(x \in \mathbb{F}_q, y \in \mathbb{F}_q^{\times})$ equals

$$\chi_{Y_{\nu}}\begin{pmatrix}x&\epsilon y\\y&x\end{pmatrix}=
u\begin{pmatrix}x&\epsilon y\\y&x\end{pmatrix}+
u^{q}\begin{pmatrix}x&\epsilon y\\y&x\end{pmatrix}.$$

2. By considering the action of $\operatorname{SL}_2(\mathbb{F}_q)$ on the projective line $\mathbb{P}^1(\mathbb{F}_q)$, verify isomorphisms $\operatorname{SL}_2(\mathbb{F}_2) \simeq S_3$, $\operatorname{PSL}_2(\mathbb{F}_3) \simeq A_4$, $\operatorname{SL}_2(\mathbb{F}_4) \simeq A_5$,

where A_n denotes the alternating group (a subgroup of S_n consisting of even permutations).