HOMEWORK 12 (TAKE-HOME FINAL EXAM)

1. Let H be an index 2 subgroup of G, and assume that a restriction of an irreducible G representation V is not H-irreducible. As seen in the class: $\operatorname{Res}_{H}^{G} V \simeq W^{\prime} \oplus W^{\prime \prime}$, where $W^{\prime}, W^{\prime \prime}$ are pairwise non-isomorphic irreducible H-representations. Show that $W^{\prime \prime}$ is conjugate to W^{\prime}.

Hint: Verify that if both $W^{\prime}, W^{\prime \prime}$ were self-conjugate, then V would be reducible.
Recall the bijection between symmetric Young diagrams λ of size n and the split pairs $\left(c^{\prime}, c^{\prime \prime}\right)$ of conjugacy classes in A_{n}. We use r to denote the number of hooks in λ, while $\left\{q_{i}\right\}_{i=1}^{r}$ will denote the cycle lengths of the corresponding c^{\prime}, $c^{\prime \prime}$ (that is, $q_{i}=2 \lambda_{i}-2 i+1$ for $1 \leq i \leq r$).
Theorem: (a) If $c^{\prime}, c^{\prime \prime}$ is a pair of split conjugacy classes that do not correspond to λ, then

$$
\chi_{\lambda}^{\prime}\left(c^{\prime}\right)=\chi_{\lambda}^{\prime \prime}\left(c^{\prime \prime}\right)=\chi_{\lambda}^{\prime}\left(c^{\prime}\right)=\chi_{\lambda}^{\prime \prime}\left(c^{\prime \prime}\right)=\frac{1}{2} \chi_{\lambda}\left(c^{\prime} \cup c^{\prime \prime}\right),
$$

where χ_{λ} denotes the character of the Specht S_{n}-module V_{λ}, while $\chi_{\lambda}^{\prime}, \chi_{\lambda}^{\prime \prime}$ are the characters of the two irreducible A_{n}-representations whose direct sum is $\operatorname{Res}_{A_{n}}^{S_{n}} V_{\lambda}$.
(b) If c^{\prime} and $c^{\prime \prime}$ correspond to λ, then

$$
\chi_{\lambda}^{\prime}\left(c^{\prime}\right)=\chi_{\lambda}^{\prime \prime}\left(c^{\prime \prime}\right)=x, \chi_{\lambda}^{\prime}\left(c^{\prime \prime}\right)=\chi_{\lambda}^{\prime \prime}\left(c^{\prime}\right)=y,
$$

with x and y being the following two numbers:

$$
\frac{1}{2}\left((-1)^{m} \pm \sqrt{(-1)^{m} q_{1} \cdots q_{r}}\right), \text { where } m=\frac{1}{2} \sum_{i=1}^{r}\left(q_{i}-1\right)
$$

2. Prove this theorem following the arguments listed below.

Step 1. Let $q=\left(q_{1}>\cdots>q_{r}\right)$ be a sequence of positive odd integers adding to n, and let $c^{\prime}=c^{\prime}(q), c^{\prime \prime}=c^{\prime \prime}(q)$ be the corresponding pair of split conjugacy classes in A_{n}. Let λ be a self-conjugate partition of n. Assume that χ_{λ}^{\prime} and $\chi_{\lambda}^{\prime \prime}$ take on the same values on each element of A_{n} that is not in c^{\prime} or $c^{\prime \prime}$. Let $u=\chi_{\lambda}^{\prime}\left(c^{\prime}\right)=\chi_{\lambda}^{\prime \prime}\left(c^{\prime \prime}\right)$ and $v=\chi_{\lambda}^{\prime}\left(c^{\prime \prime}\right)=\chi_{\lambda}^{\prime \prime}\left(c^{\prime}\right)$.
(i) Show that u, v are real when m is even and $\bar{u}=v$ when m is odd.
(ii) Let $\vartheta=\chi_{\lambda}^{\prime}-\chi_{\lambda}^{\prime \prime}$. Deduce from the equation $\langle\vartheta, \vartheta\rangle=2$ that $|u-v|^{2}=q_{1} \cdots q_{r}$.
(iii) Show that λ is the partition that corresponds to q and that $u+v=(-1)^{m}$. Deduce that u, v are the numbers specified in (\dagger).

Step 2. Prove the theorem by induction on n, and for a fixed n, look at that q which has the smallest q_{1} and for which some character has values on the classes $c^{\prime}(q)$ and $c^{\prime \prime}(q)$ other than those prescribed by the theorem.
(i) If $r=1$, so that $q_{1}=n=2 m+1$, the corresponding self-conjugate partition is $\lambda=(m+1,1, \ldots, 1)$. By induction, Step 1 applies to χ_{λ}^{\prime} and $\chi_{\lambda}^{\prime \prime}$.
(ii) If $r>1$, consider the embedding $H=A_{q_{1}} \times A_{n-q_{1}} \subset A_{n}=G$, and let $X^{\prime}, X^{\prime \prime}$ be the representations of G induced from the representations $W_{1}^{\prime} \boxtimes W_{2}^{\prime}$ and $W_{1}^{\prime \prime} \boxtimes W_{2}^{\prime}$, where $W_{1}^{\prime}, W_{1}^{\prime \prime}$ are the representations of $A_{q_{1}}$ corresponding to q_{1}, W_{2}^{\prime} is one of the representations of $A_{n-q_{1}}$ corresponding to $\left(q_{2}, \ldots, q_{r}\right)$, and \boxtimes denotes the external tensor product. Show that X^{\prime} and
$X^{\prime \prime}$ are conjugate representations of A_{n}, and their characters $\chi^{\prime}, \chi^{\prime \prime}$ take equal values on each pair of split conjugacy classes, with the exception of $c^{\prime}(q), c^{\prime \prime}(q)$, and compute the values of these characters on $c^{\prime}(q), c^{\prime \prime}(q)$.
(iii) Let $\vartheta=\chi^{\prime}-\chi^{\prime \prime}$. Verify that $\langle\vartheta, \vartheta\rangle=2$. Decomposing $X^{\prime}, X^{\prime \prime}$ into irreducibles, deduce that $X^{\prime} \simeq Y \oplus W_{\lambda}^{\prime}, X^{\prime \prime} \simeq Y \oplus W_{\lambda}^{\prime \prime}$ for some self-conjugate representation Y and some self-conjugate partition λ of n.
(iv) Apply Step 1 to the characters χ_{λ}^{\prime} and $\chi_{\lambda}^{\prime \prime}$, and conclude the proof.
3. Compute the character tables of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$ (for odd q).
4. Verify that $q+4$ representations of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ we established in the last class are indeed irreducible, pairwise non-isomorphic, and exhaust a complete list of irreducible representations.

Recall that representations $W^{\prime}, W^{\prime \prime}, X^{\prime}, X^{\prime \prime}$ of those $q+4$ irreducible $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$-representations were constructed implicitly. To be precise, if $\tau: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$is the non-trivial character such that $\tau^{2}=1$, then we defined $W^{\prime}, W^{\prime \prime}$ as the two irreducible representations whose direct sum is $\operatorname{Res}_{\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)}^{\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)} V_{\tau, 1}$. Likewise, for a character $\psi: \mathbb{F}_{q^{2}}^{\times} \rightarrow \mathbb{C}^{\times}$such that its restriction $\psi_{C}: C \rightarrow \mathbb{C}^{\times}$ (here $C=\left\{x \in \mathbb{F}_{q^{2}}^{\times}: x^{q+1}=1\right\}$) is nontrivial but $\psi_{C}^{2}=1$, we defined $X^{\prime}, X^{\prime \prime}$ as the two irreducible representations whose direct sum is $\operatorname{Res}_{\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)}^{\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)} M_{\psi}$. The goal of the last problem is to determine the characters of these four representations.
5. Let H be the index 2 subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ consisting of those matrices whose determinant is a square.
(a) Describe the split conjugacy classes in H. Verify that both restrictions $\operatorname{Res}_{H}^{\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)} V_{\tau, 1}$ and $\operatorname{Res}_{H} \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) M_{\psi}$ split into sums of conjugate irreducible representations of half their dimensions. Deduce that their further restrictions to $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ remain irreducible and exactly recover $W^{\prime}, W^{\prime \prime}, X^{\prime}, X^{\prime \prime}$. Use this to prove that the character values of $W^{\prime}, W^{\prime \prime}$ (resp. $X^{\prime}, X^{\prime \prime}$) on all nonsplit conjugacy classes are the same as half the character of $V_{\tau, 1}\left(\right.$ resp. $\left.M_{\psi}\right)$.
(b) Let $s, t, s^{\prime}, t^{\prime}$ denote the remaining values of the characters of $W^{\prime}, W^{\prime \prime}$:

$$
\begin{aligned}
& s=\chi_{W^{\prime}}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\chi_{W^{\prime \prime}}\left(\begin{array}{cc}
1 & \epsilon \\
0 & 1
\end{array}\right), t=\chi_{W^{\prime}}\left(\begin{array}{ll}
1 & \epsilon \\
0 & 1
\end{array}\right)=\chi_{W^{\prime \prime}}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& s^{\prime}=\chi_{W^{\prime}}\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)=\chi_{W^{\prime \prime}}\left(\begin{array}{cc}
-1 & \epsilon \\
0 & -1
\end{array}\right), t^{\prime}=\chi_{W^{\prime}}\left(\begin{array}{cc}
-1 & \epsilon \\
0 & -1
\end{array}\right)=\chi_{W^{\prime \prime}}\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Show that $s+t=1$. Using $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ and the equality $\chi\left(g^{-1}\right)=\overline{\chi(g)}$ for any character, deduce that s, t are real if $q \equiv 1(\bmod 4)$ and $s=\bar{t}$ if $q \equiv 3(\bmod 4)$. Use the equality $\chi(-g)=\chi(g) \cdot \chi(1) / \chi(-e)$ to prove $s^{\prime}=\tau(-1) s, t^{\prime}=\tau(-1) t$. Finally, use $\left\langle\chi_{W^{\prime}}, \chi_{W^{\prime}}\right\rangle=1$ to determine $s \bar{t}+t \bar{s}$. Combining all the above, deduce that

$$
s, t=\frac{1}{2} \pm \frac{1}{2} \sqrt{\omega q}, \text { where } \omega=\tau(-1)= \begin{cases}1 & \text { if } q \equiv 1(\bmod 4) \\ -1 & \text { if } q \equiv 3(\bmod 4)\end{cases}
$$

(c) Use analogous arguments to compute the characters of $X^{\prime}, X^{\prime \prime}$.

